Functionalization of Porphyrins Using Metal-Catalyzed C–H Activation
Abstract
:1. Introduction
2. C–H-Functionalization on Porphyrins
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Am | amyl; |
Ar | aryl; |
Bu | butyl; |
Cod | cyclooctadiene |
DMF | N, N-dimethylformamide |
Dtbpy | di-t-Bu-2,2′-bipyridyl |
DavePhos | 2-Dicyclohexylphosphino-2′-(N, N-dimethylamino)biphenyl |
Et | ethyl; |
EtOH | ethanol |
Herrmann’s catalyst | (2-methanidylphenyl)-bis(2-methylphenyl) phosphane palladium (II) diacetate |
Me | methyl; |
MeOH | methanol |
Mes | mesyl |
Ph | phenyl |
Ph3P | triphenylphosphine; |
Pr | propyl |
PCy3 | tricyclohexylphosphine; |
Py | pyridine |
Pd(OAc)2 | palladium (II) acetate |
PdCl2(dppf) | [1,1′-bis(diphenylphosphino)ferrocene] palladium (II) dichloride |
Pd2(dba)3 | tris(dibenzylideneacetone) dipalladium (0) |
THF | tetrahydrofuran |
t-Bu | tert-butyl |
t-BuCOOH | pivalic acid |
References
- Beletskaya, I.; Ananikov, V. The reasons organic chemistry is needed for in a well developed country. Russ. J. Org. Chem. 2015, 51, 145–147. [Google Scholar] [CrossRef]
- Han, B.; Wu, T. Green Chemistry and Chemical Engineering; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Goldman, A.; Ghosh, R. Handbook of CH Transformations: Applications in Organic Synthesis; Wiley-VCH: New York, NY, USA, 2005. [Google Scholar]
- Karlinskii, B.Y.; Ananikov, V.P. Catalytic C−H Functionalization of Unreactive Furan Cores in Bio-Derived Platform Chemicals. ChemSusChem 2021, 14, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.M.; de Carvalho, R.L.; da Silva Júnior, E.N. The Different Facets of Metal-Catalyzed C−H Functionalization Involving Quinone Compounds. Chem. Rec. 2021, 21, 2604–2637. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.; Yarwood, S.J.; Barker, G. Recent Developments in C−H Functionalisation of Benzofurans and Benzothiophenes. Eur. J. Org. Chem. 2021, 2021, 1072–1102. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Dutta, S.; Maiti, D. Deciphering the Role of Silver in Palladium-Catalyzed C–H Functionalizations. ACS Catal. 2021, 11, 9702–9714. [Google Scholar] [CrossRef]
- Segawa, Y.; Maekawa, T.; Itami, K. Synthesis of Extended π-Systems through C–H Activation. Angew. Chem. Int. Ed. 2015, 54, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.L.; McMullon, M.W.; Rieb, J.; Kuehn, F.E. C–H Bond Activation by f-Block Complexes. Angew. Chem. Int. Ed. 2015, 54, 82–100. [Google Scholar] [CrossRef]
- Ackermann, L.; Vicente, R.; Kapdi, A.R. Transition-metal-catalyzed direct arylation of (hetero) arenes by C–H bond cleavage. Angew. Chem. Int. Ed. 2009, 48, 9792–9826. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative coupling between two hydrocarbons: An update of recent C–H functionalizations. Chem. Rev. 2015, 115, 12138–12204. [Google Scholar] [CrossRef]
- Klussmann, M.; Sureshkumar, D. Catalytic oxidative coupling reactions for the formation of carbon-carbon bonds without carbon-metal intermediates. Synthesis 2011, 2011, 353–369. [Google Scholar] [CrossRef]
- Liu, C.; Jin, L.; Lei, A. Transition-metal-catalyzed oxidative cross-coupling reactions. Synlett 2010, 2010, 2527–2536. [Google Scholar]
- Huang, S.-T.; Hsei, I.-J.; Chen, C. Synthesis and anticancer evaluation of bis (benzimidazoles), bis (benzoxazoles), and benzothiazoles. Biorg. Med. Chem. 2006, 14, 6106–6119. [Google Scholar] [CrossRef] [PubMed]
- Rohini, R.; Reddy, P.M.; Shanker, K.; Hu, A.; Ravinder, V. Antimicrobial study of newly synthesized 6-substituted indolo [1, 2-c] quinazolines. Eur. J. Med. Chem. 2010, 45, 1200–1205. [Google Scholar] [CrossRef]
- Nadres, E.T.; Lazareva, A.; Daugulis, O. Palladium-catalyzed indole, pyrrole, and furan arylation by aryl chlorides. J. Org. Chem. 2011, 76, 471–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohini, R.; Shanker, K.; Reddy, P.M.; Sekhar, V.C.; Ravinder, V. 6-Substituted Indolo [1, 2-c] quinazolines as New Antimicrobial Agents. Arch. Pharm. Int. J. Pharm. Med. Chem. 2009, 342, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Joucla, L.; Djakovitch, L. Transition Metal-Catalysed, Direct and Site-Selective N1-, C2-or C3-Arylation of the Indole Nucleus: 20 Years of Improvements. Adv. Synth. Catal. 2009, 351, 673–714. [Google Scholar] [CrossRef]
- Wang, Y.; Frett, B.; McConnell, N.; Li, H.-Y. Metal-free, efficient hydrazination of imidazo [1, 2-a] pyridine with diethyl azodicarboxylate in neutral media. Org. Biomol. Chem. 2015, 13, 2958–2964. [Google Scholar] [CrossRef] [Green Version]
- Odlo, K.; Fournier-Dit-Chabert, J.; Ducki, S.; Gani, O.A.; Sylte, I.; Hansen, T.V. 1,2,3-Triazole analogs of combretastatin A-4 as potential microtubule-binding agents. Biorg. Med. Chem. 2010, 18, 6874–6885. [Google Scholar] [CrossRef]
- Zhan, B.-B.; Jin, L.; Shi, B.-F. Palladium-catalyzed enantioselective C–H functionalization via C–H palladation. Trends Chem. 2022, 4, 220–235. [Google Scholar] [CrossRef]
- Zhang, L.; Ritter, T. A Perspective on Late-Stage Aromatic C–H Bond Functionalization. J. Am. Chem. Soc. 2022, 144, 2399–2414. [Google Scholar] [CrossRef]
- Xing, L.; Luscombe, C.K. Advances in applying C–H functionalization and naturally sourced building blocks in organic semiconductor synthesis. J. Mater. Chem. C 2021, 9, 16391–16409. [Google Scholar] [CrossRef]
- Yu, H.; Thiessen, A.N.; Hossain, M.A.; Kloberg, M.J.; Rieger, B.; Veinot, J.G. Thermally Induced Dehydrogenative Coupling of Organosilanes and H-Terminated Silicon Quantum Dots onto Germanane Surfaces. Chem. Mater. 2020, 32, 4536–4543. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Tyurin, V.S.; Uglov, A.; Stern, C.; Guilard, R. Survey of synthetic routes for synthesis and substitution in porphyrins. In Handbook of Porphyrin Science with Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine; World Scientific: Singapore, 2012; Volume 23, pp. 81–279. [Google Scholar]
- Sessler, J.L.; Wang, B.; Harriman, A. Photoinduced energy transfer in associated, but noncovalently-linked photosynthetic model systems. J. Am. Chem. Soc. 1995, 117, 704–714. [Google Scholar] [CrossRef]
- Milgrom, L.R.; Dempsey, P.J.; Yahioglu, G. 5,10,15,20-tetrakis (N-protected-imidazol-2-yl) porphyrins. Tetrahedron 1996, 52, 9877–9890. [Google Scholar] [CrossRef]
- Sengupta, K.; Chatterjee, S.; Samanta, S.; Dey, A. Direct observation of intermediates formed during steady-state electrocatalytic O2 reduction by iron porphyrins. Proc. Natl. Acad. Sci. USA 2013, 110, 8431–8436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, S.M.; Lourenço, M.A.; Calvete, M.J.; Abreu, A.R.; Rosado, M.T.; Burrows, H.D.; Pereira, M.M. Synthesis of new metalloporphyrin triads: Efficient and versatile tripod optical sensor for the detection of amines. Inorg. Chem. 2011, 50, 7916–7918. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.M.; Burrell, A.K.; Officer, D.L.; Jolley, K.W. Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coord. Chem. Rev. 2004, 248, 1363–1379. [Google Scholar] [CrossRef]
- Wamser, C.C.; Kim, H.-S.; Lee, J.-K. Solar cells with porphyrin sensitization. Opt. Mater. 2003, 21, 221–224. [Google Scholar] [CrossRef]
- Schäferling, M.; Bäuerle, P. Porphyrin-functionalized oligo-and polythiophenes. J. Mater. Chem. 2004, 14, 1132–1141. [Google Scholar] [CrossRef]
- Borek, C.; Hanson, K.; Djurovich, P.I.; Thompson, M.E.; Aznavour, K.; Bau, R.; Sun, Y.; Forrest, S.R.; Brooks, J.; Michalski, L. Highly Efficient, Near-Infrared Electrophosphorescence from a Pt–Metalloporphyrin Complex. Angew. Chem. Int. Ed. 2007, 46, 1109–1112. [Google Scholar] [CrossRef] [Green Version]
- Suslick, K.S.; Chen, C.T.; Meredith, G.R.; Cheng, L.T. Push-pull porphyrins as nonlinear optical materials. J. Am. Chem. Soc. 1992, 114, 6928–6930. [Google Scholar] [CrossRef]
- Calvete, M.J. Near-infrared absorbing organic materials with nonlinear transmission properties. Int. Rev. Phys. Chem. 2012, 31, 319–366. [Google Scholar] [CrossRef]
- Jurow, M.; Schuckman, A.E.; Batteas, J.D.; Drain, C.M. Porphyrins as molecular electronic components of functional devices. Coord. Chem. Rev. 2010, 254, 2297–2310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Kang, S.W.; Harden, J.; Sun, Q.; Zhou, X.; Dai, L.; Jakli, A.; Kumar, S.; Li, Q. Nature-inspired light-harvesting liquid crystalline porphyrins for organic photovoltaics. Liq. Cryst. 2008, 35, 233–239. [Google Scholar] [CrossRef]
- Gianferrara, T.; Spagnul, C.; Alberto, R.; Gasser, G.; Ferrari, S.; Pierroz, V.; Bergamo, A.; Alessio, E. Towards matched pairs of porphyrin–ReI/99mTcI conjugates that combine photodynamic activity with fluorescence and radio imaging. ChemMedChem 2014, 9, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Barron, G.; Valentine, R.; Moseley, H.; Brancaleon, L.; Hill, C.; Woods, J. Porphyrin profile in four human cell lines after supplementation with 5-aminolaevulinic acid and its methyl ester. Photodiagn. Photodyn. Ther. 2013, 10, 654–663. [Google Scholar] [CrossRef]
- Koifman, O.I.; Ageeva, T.A.; Beletskaya, I.P.; Averin, A.D.; Yakushev, A.A.; Tomilova, L.G.; Dubinina, T.V.; Tsivadze, A.Y.; Gorbunova, Y.G.; Martynov, A.G. Macroheterocyclic compounds a key building block in new functional materials and molecular devices. Macroheterocycles 2020, 13, 311–467. [Google Scholar] [CrossRef]
- Hata, H.; Shinokubo, H.; Osuka, A. Highly regioselective Ir-Catalyzed β-borylation of porphyrins via C−H bond activation and construction of β−β-linked diporphyrin. J. Am. Chem. Soc. 2005, 127, 8264–8265. [Google Scholar] [CrossRef]
- Deng, Y.; Chang, C.; Nocera, D.G. Facile Synthesis of β-Derivatized Porphyrins—Structural Characterization of a β–β-Bis-Porphyrin. Angew. Chem. Int. Ed. 2000, 39, 1066–1068. [Google Scholar] [CrossRef]
- Evans, B.; Smith, K.M. Novel meso-substitution reactions of zinc (II) octaethylporphyrin. Tetrahedron Lett. 1977, 18, 3079–3082. [Google Scholar] [CrossRef]
- Shinokubo, H. Transition metal catalyzed borylation of functional π-systems. Proc. Jpn. Acad. Ser. B 2014, 90, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boller, T.M.; Murphy, J.M.; Hapke, M.; Ishiyama, T.; Miyaura, N.; Hartwig, J.F. Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. Intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes. J. Am. Chem. Soc. 2005, 127, 14263–14278. [Google Scholar] [CrossRef] [PubMed]
- Hiroto, S.; Miyake, Y.; Shinokubo, H. Synthesis and functionalization of porphyrins through organometallic methodologies. Chem. Rev. 2017, 117, 2910–3043. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.; Boyle, R.W. First examples of intramolecular Pd (0) catalysed couplings on ortho-iodinated meso-phenyl porphyrins. Chem. Commun. 2004, 11, 1322–1323. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.; Boyle, R.W. Synthetic routes to porphyrins bearing fused rings. Tetrahedron 2006, 43, 10039–10054. [Google Scholar] [CrossRef]
- Cammidge, A.N.; Scaife, P.J.; Berber, G.; Hughes, D.L. Cofacial porphyrin−ferrocene dyads and a new class of conjugated porphyrin. Org. Lett. 2005, 7, 3413–3416. [Google Scholar] [CrossRef] [PubMed]
- Osawa, K.; Aratani, N.; Osuka, A. Facile synthesis and photophysical properties of 1, 2-phenylene-bridged porphyrin dimers. Tetrahedron Lett. 2009, 50, 3333–3337. [Google Scholar] [CrossRef]
- Mitsushige, Y.; Yamaguchi, S.; Lee, B.S.; Sung, Y.M.; Kuhri, S.; Schierl, C.A.; Guldi, D.M.; Kim, D.; Matsuo, Y. Synthesis of thieno-bridged porphyrins: Changing the antiaromatic contribution by the direction of the thiophene ring. J. Am. Chem. Soc. 2012, 134, 16540–16543. [Google Scholar] [CrossRef]
- Locos, O.B.; Arnold, D.P. The Heck reaction for porphyrin functionalisation: Synthesis of meso-alkenyl monoporphyrins and palladium-catalysed formation of unprecedented meso–β ethene-linked diporphyrins. Org. Biomol. Chem. 2006, 4, 902–916. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, A.K.; Mori, S.; Shinokubo, H.; Osuka, A. Facile Peripheral Functionalization of Porphyrins by Pd-Catalyzed [3 + 2] Annulation with Alkynes. Angew. Chem. Int. Ed. 2006, 45, 7972–7975. [Google Scholar] [CrossRef]
- Tokuji, S.; Yurino, T.; Aratani, N.; Shinokubo, H.; Osuka, A. Palladium-Catalyzed Dimerization of meso-Bromoporphyrins: Highly Regioselective meso–β Coupling through Unprecedented Remote C–H Bond Cleavage. Chem. Eur. J. 2009, 15, 12208–12211. [Google Scholar] [CrossRef] [PubMed]
- Kawamata, Y.; Tokuji, S.; Yorimitsu, H.; Osuka, A. Palladium-Catalyzed β-Selective Direct Arylation of Porphyrins. Angew. Chem. Int. Ed. 2011, 50, 8867–8870. [Google Scholar] [CrossRef] [PubMed]
- Lafrance, M.; Fagnou, K. Palladium-catalyzed benzene arylation: Incorporation of catalytic pivalic acid as a proton shuttle and a key element in catalyst design. J. Am. Chem. Soc. 2006, 128, 16496–16497. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-Y.; Gorelsky, S.I.; Stuart, D.R.; Campeau, L.-C.; Fagnou, K. Mechanistic analysis of azine N-oxide direct arylation: Evidence for a critical role of acetate in the Pd(OAc)2 precatalyst. J. Org. Chem. 2010, 75, 8180–8189. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, D.; Markiewicz, T.; Whipp, C.J.; Toderian, A.; Fagnou, K. Predictable and site-selective functionalization of poly (hetero) arene compounds by palladium catalysis. J. Org. Chem. 2011, 76, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Gorelsky, S.I.; Lapointe, D.; Fagnou, K. Analysis of the palladium-catalyzed (aromatic) C–H bond metalation–deprotonation mechanism spanning the entire spectrum of arenes. J. Org. Chem. 2012, 77, 658–668. [Google Scholar] [CrossRef]
- Tokuji, S.; Awane, H.; Yorimitsu, H.; Osuka, A. Direct Arylation of meso-Formyl Porphyrin. Chem. Eur. J. 2013, 19, 64–68. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Tokuji, S.; Tanaka, T.; Yorimitsu, H.; Osuka, A. Direct Arylation of Porphyrins with π-Extended Aryl Bromides under Ligand-free Fagnou–Hartwig Conditions. Asian J. Org. Chem. 2013, 2, 320–324. [Google Scholar] [CrossRef]
- Chen, J.; Aratani, N.; Shinokubo, H.; Osuka, A. Post-Modification of meso–meso-Linked Porphyrin Arrays by Iridium and Rhodium Catalyses for Tuning of Energy Gap. Chem. Asian J. 2009, 4, 1126–1133. [Google Scholar] [CrossRef]
- Hisaki, I.; Hiroto, S.; Kim, K.S.; Noh, S.B.; Kim, D.; Shinokubo, H.; Osuka, A. Synthesis of Doubly β-to-β 1, 3-Butadiyne-Bridged Diporphyrins: Enforced Planar Structures and Large Two-Photon Absorption Cross Sections. Angew. Chem. 2007, 119, 5217–5220. [Google Scholar] [CrossRef]
- Song, J.; Jang, S.Y.; Yamaguchi, S.; Sankar, J.; Hiroto, S.; Aratani, N.; Shin, J.Y.; Easwaramoorthi, S.; Kim, K.S.; Kim, D. 2,5-Thienylene-Bridged Triangular and Linear Porphyrin Trimers. Angew. Chem. 2008, 120, 6093–6096. [Google Scholar] [CrossRef]
- Hiroto, S.; Hisaki, I.; Shinokubo, H.; Osuka, A. Synthesis of directly and doubly linked dioxoisobacteriochlorin dimers. J. Am. Chem. Soc. 2008, 130, 16172–16173. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Aratani, N.; Easwaramoorthi, S.; Kim, D.; Osuka, A. Meso-β doubly linked Zn (II) porphyrin trimers: Distinct anti-versus-syn effects on their photophysical properties. Org. Lett. 2009, 11, 3080–3083. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Yoon, M.-C.; Lim, J.M.; Kim, P.; Aratani, N.; Nakamura, Y.; Ikeda, T.; Osuka, A.; Kim, D. Structural factors determining photophysical properties of directly linked zinc (II) porphyrin dimers: Linking position, dihedral angle, and linkage length. J. Phys. Chem. B 2009, 113, 10619–10627. [Google Scholar] [CrossRef]
- Song, J.; Kim, P.; Aratani, N.; Kim, D.; Shinokubo, H.; Osuka, A. Strategic Synthesis of 2,6-Pyridylene-Bridged β-to-β Porphyrin Nanorings through Cross-Coupling. Chem. Eur. J. 2010, 16, 3009–3012. [Google Scholar] [CrossRef]
- She, C.; Easwaramoorthi, S.; Kim, P.; Hiroto, S.; Hisaki, I.; Shinokubo, H.; Osuka, A.; Kim, D.; Hupp, J.T. Excess Polarizability Reveals Exciton Localization/Delocalization Controlled by Linking Positions on Porphyrin Rings in Butadiyne-Bridged Porphyrin Dimers. J. Phys. Chem. A 2010, 114, 3384–3390. [Google Scholar] [CrossRef]
- Song, J.; Aratani, N.; Kim, P.; Kim, D.; Shinokubo, H.; Osuka, A. Porphyrin “Lego Block” Strategy To Construct Directly meso–β Doubly Linked Porphyrin Rings. Angew. Chem. 2010, 122, 3699–3702. [Google Scholar] [CrossRef]
- Song, J.; Aratani, N.; Shinokubo, H.; Osuka, A. A porphyrin nanobarrel that encapsulates C60. J. Am. Chem. Soc. 2010, 132, 16356–16357. [Google Scholar] [CrossRef]
- Song, J.; Aratani, N.; Shinokubo, H.; Osuka, A. A β-to-β 2,5-thienylene-bridged cyclic porphyrin tetramer: Its rational synthesis and 1: 2 binding mode with C60. Chem. Sci. 2011, 2, 748–751. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Anabuki, S.; Aratani, N.; Shinokubo, H.; Osuka, A. A hexameric porphyrin triangle constructed by Suzuki–Miyaura Cross-coupling reaction. Chem. Lett. 2011, 40, 902–903. [Google Scholar] [CrossRef]
- Tokuji, S.; Maeda, C.; Yorimitsu, H.; Osuka, A. New Synthetic Strategy for Diporphyrins: Pinacol Coupling–Rearrangement. Chem. Eur. J. 2011, 17, 7154–7157. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, S.; Aratani, N.; Osuka, A. A doubly 2,6-pyridylene-bridged porphyrin–perylene–porphyrin triad. Chem. Commun. 2012, 48, 4317–4319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiselev, A.N.; Grigorova, O.K.; Averin, A.D.; Syrbu, S.A.; Koifman, O.I.; Beletskaya, I.P. Direct catalytic arylation of heteroarenes with meso-bromophenyl-substituted porphyrins. Beilstein J. Org. Chem. 2017, 13, 1524–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubarev, Y.A.; Lebedeva, N.S.; Yurina, E.S.; Syrbu, S.A.; Kiselev, A.N.; Lebedev, M.A. Possible therapeutic targets and promising drugs based on unsymmetrical hetaryl-substituted porphyrins to combat SARS-CoV-2. J. Pharm. Anal. 2021, 11, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Pukhovskaya, S.; Ivanova, Y.; Kiselev, A.; Fomina, N.; Syrbu, S. Synthesis, structure and basic properties of 5, 10, 15, 20-tetrakis [4′-(benzoxazole-2-yl) phenyl]-21, 23-dithiaporphyrin. J. Mol. Struct. 2021, 1238, 130406. [Google Scholar] [CrossRef]
- Khandagale, S.B.; Pilania, M.; Arun, V.; Kumar, D. Metal-catalyzed direct heteroarylation of C–H (meso) bonds in porphyrins: Facile synthesis and photophysical properties of novel meso-heteroaromatic appended porphyrins. Org. Biomol. Chem. 2018, 16, 2097–2104. [Google Scholar] [CrossRef]
- Seregin, I.V.; Gevorgyan, V. Direct transition metal-catalyzed functionalization of heteroaromatic compounds. Chem. Soc. Rev. 2007, 36, 1173–1193. [Google Scholar] [CrossRef] [PubMed]
- Roudesly, F.; Oble, J.; Poli, G. Metal-catalyzed CH activation/functionalization: The fundamentals. J. Mol. Catal. A Chem. 2017, 426, 275–296. [Google Scholar] [CrossRef]
- Verrier, C.; Lassalas, P.; Théveau, L.; Quéguiner, G.; Trécourt, F.; Marsais, F.; Hoarau, C. Recent advances in direct C–H arylation: Methodology, selectivity and mechanism in oxazole series. Beilstein J. Org. Chem. 2011, 7, 1584–1601. [Google Scholar] [CrossRef]
- Yan, X.-M.; Mao, X.-R.; Huang, Z.-Z. An efficient arylation of benzoazoles with aryl bromides by a practical palladium-copper cocatalytic system. Heterocycles 2011, 83, 1371–1376. [Google Scholar] [CrossRef]
- Huang, J.; Chan, J.; Chen, Y.; Borths, C.J.; Baucom, K.D.; Larsen, R.D.; Faul, M.M. A highly efficient palladium/copper cocatalytic system for direct arylation of heteroarenes: An unexpected effect of Cu (Xantphos) I. J. Am. Chem. Soc. 2010, 132, 3674–3675. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, T.; Miyaura, N. Transition metal-catalyzed borylation of alkanes and arenes via C–H activation. J. Organomet. Chem. 2003, 680, 3–11. [Google Scholar] [CrossRef]
- Ishiyama, T.; Miyaura, N. Metal-catalyzed reactions of diborons for synthesis of organoboron compounds. Chem. Rec. 2004, 3, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, T. Transition metal-catalyzed direct borylation and silylation based on CH activation. J. Synth. Org. Chem. Jpn. 2005, 63, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, J.F. Borylation and silylation of C–H bonds: A platform for diverse C–H bond functionalizations. Acc. Chem. Res. 2012, 45, 864–873. [Google Scholar] [CrossRef]
- Cho, J.-Y.; Tse, M.K.; Holmes, D.; Maleczka, R.E., Jr.; Smith, M.R., III. Remarkably selective iridium catalysts for the elaboration of aromatic CH bonds. Science 2002, 295, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.-Y.; Iverson, C.N.; Smith, M.R. Steric and chelate directing effects in aromatic borylation. J. Am. Chem. Soc. 2000, 122, 12868–12869. [Google Scholar] [CrossRef]
- Ishiyama, T.; Nobuta, Y.; Hartwig, J.F.; Miyaura, N. Room temperature borylation of arenes and heteroarenes using stoichiometric amounts of pinacolborane catalyzed by iridium complexes in an inert solvent. Chem. Commun. 2003, 17, 2924–2925. [Google Scholar] [CrossRef]
- Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N.R.; Hartwig, J.F. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 2002, 124, 390–391. [Google Scholar] [CrossRef]
- Ishiyama, T.; Takagi, J.; Hartwig, J.F.; Miyaura, N. A Stoichiometric Aromatic C–H Borylation Catalyzed by Iridium (i)/2,2′-Bipyridine Complexes at Room Temperature. Angew. Chem. Int. Ed. 2002, 41, 3056–3058. [Google Scholar] [CrossRef]
- Lapointe, D.; Fagnou, K. Overview of the mechanistic work on the concerted metallation–deprotonation pathway. Chem. Lett. 2010, 39, 1118–1126. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiselev, A.N.; Syrbu, S.A.; Lebedeva, N.S.; Gubarev, Y.A. Functionalization of Porphyrins Using Metal-Catalyzed C–H Activation. Inorganics 2022, 10, 63. https://doi.org/10.3390/inorganics10050063
Kiselev AN, Syrbu SA, Lebedeva NS, Gubarev YA. Functionalization of Porphyrins Using Metal-Catalyzed C–H Activation. Inorganics. 2022; 10(5):63. https://doi.org/10.3390/inorganics10050063
Chicago/Turabian StyleKiselev, Aleksey N., Sergey A. Syrbu, Natalia Sh. Lebedeva, and Yury A. Gubarev. 2022. "Functionalization of Porphyrins Using Metal-Catalyzed C–H Activation" Inorganics 10, no. 5: 63. https://doi.org/10.3390/inorganics10050063
APA StyleKiselev, A. N., Syrbu, S. A., Lebedeva, N. S., & Gubarev, Y. A. (2022). Functionalization of Porphyrins Using Metal-Catalyzed C–H Activation. Inorganics, 10(5), 63. https://doi.org/10.3390/inorganics10050063