Synthesis and Crystal Structure of the Zintl Phases Na2CaCdSb2, Na2SrCdSb2 and Na2EuCdSb2
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xia, S.-Q.; Bobev, S. Cation-anion interactions as structure directing factors: Structure and bonding of Ca2CdSb2 and Yb2CdSb2. J. Am. Chem. Soc. 2007, 129, 4049–4057. [Google Scholar] [CrossRef] [PubMed]
- Saparov, B.; Saito, M.; Bobev, S. Syntheses, and crystal and electronic structures of the new Zintl phases Na2ACdSb2 and K2ACdSb2 (A = Ca, Sr, Ba, Eu, Yb): Structural relationship with Yb2CdSb2 and the solid solutions Sr2–xAxCdSb2, Ba2–xAxCdSb2 and Eu2–xYbxCdSb2. J. Solid State Chem. 2011, 184, 432–440. [Google Scholar] [CrossRef]
- Ogunbunmi, M.O.; Baranets, S.; Bobev, S. Structural complexity and tuned thermoelectric properties of a new polymorph of the Zintl phase Ca2CdSb2 with a non-centrosymmetric monoclinic structure. Inorg. Chem. 2022, 61, 10888–10897. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, A.; Darone, G.; Saparov, B.; Bobev, S. Exploratory work in the quaternary system of Ca–Eu–Cd–Sb: Synthesis, crystal, and electronic structures of new Zintl solid solutions. Materials 2018, 11, 2146. [Google Scholar] [CrossRef]
- Wang, J.; Yang, M.; Pan, M.-Y.; Xia, S.-Q.; Tao, X.-T.; He, H.; Darone, G.M.; Bobev, S. Synthesis, crystal and electronic structures, and properties, of the new pnictide semiconductors A2CdPn2 (A = Ca, Sr, Ba, Eu; Pn = P, As). Inorg. Chem. 2011, 50, 8020–8027. [Google Scholar] [CrossRef]
- Saparov, B.; Broda, M.; Ramanujachary, K.V.; Bobev, S. New quaternary Zintl phases—Synthesis, crystal and electronic structures of KA2Cd2Sb3 (A = Ca, Sr, Ba, Eu, Yb). Polyhedron 2010, 29, 456–462. [Google Scholar] [CrossRef]
- Balvanz, A.; Qu, J.; Baranets, S.; Ertekin, E.; Gorai, P.; Bobev, S. New n-type Zintl phases for thermoelectrics: Discovery, structural characterization, and band engineering of the compounds A2CdP2 (A = Sr, Ba, Eu). Chem. Mater. 2020, 32, 10697–10707. [Google Scholar] [CrossRef]
- Qu, J.; Balvanz, A.; Baranets, S.; Bobev, S.; Gorai, P. Computational design of thermoelectric alloys through optimization of transport and dupability. Mater. Horiz. 2022, 9, 720–730. [Google Scholar] [CrossRef]
- Cooley, J.A.; Promkhan, P.; Gangopadhyay, S.; Donadio, D.; Pickett, W.E.; Ortiz, B.R.; Toberer, E.S.; Kauzlarich, S.M. High Seebeck coefficient and unusually low thermal conductivity near ambient temperatures in layered compound Yb2–xEuxCdSb2. Chem. Mater. 2018, 30, 484–493. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.; Shin, S.; Jo, H.; Moon, D.; Ok, K.M.; You, T.-S. Chemical driving force for phase-transition in the Ca2–xRExCdSb2 (RE = Yb, Eu; 0.11(1) ≤ x ≤ 1.36(2)) system. Cryst. Growth Des. 2020, 20, 746–754. [Google Scholar] [CrossRef]
- Devlin, K.P.; Chen, S.; Donadio, D.; Kauzlarich, S.M. Solid solution Yb2–xCaxCdSb2: Structure, thermoelectric properties, and quality factor. Inorg. Chem. 2021, 60, 13596–13606. [Google Scholar] [CrossRef] [PubMed]
- Hauble, A.K.; Crawford, C.M.; Adamczyk, J.M.; Wood, M.; Fettinger, J.C.; Toberer, E.S.; Kauzlarich, S.M. Deciphering defects in Yb2–xCaxCdSb2and their impact on thermoelectric properties. Chem. Mater. 2022, 34, 9228–9239. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, C.; Chen, J.; Xu, F.; Yang, S.; Li, B.; Yang, G.; Luo, M.; Ye, N. α-Ca2CdP2 and β-Ca2CdP2: Two polymorphic phosphide-based infrared nonlinear crystals with distorted NLO-active tetrahedral motifs realizing large second harmonic generation effects and suitable band gaps. Inorg. Chem. 2021, 60, 7553–7560. [Google Scholar] [CrossRef] [PubMed]
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, USA, 1960. [Google Scholar]
- Saparov, B.; Xia, S.-Q.; Bobev, S. Synthesis, structure and bonding of the Zintl phase Ba3Cd2Sb4. Inorg. Chem. 2008, 47, 11237–11244. [Google Scholar] [CrossRef]
- Saparov, B.; He, H.; Zhang, H.; Greene, R.; Bobev, S. Synthesis, crystallographic and theoretical studies of the new Zintl phases Ba2Cd2Pn3 (Pn = As, Sb), and the solid solutions (Ba1–xSrx)2Cd2Sb3 and Ba2Cd2(Sb1–xAsx)3. Dalton Trans. 2010, 39, 1063–1070. [Google Scholar] [CrossRef]
- Saparov, B.; Bobev, S. Isolated [ZnPn2]4– chains in the Zintl phases Ba2ZnPn2 (Pn = As, Sb, Bi)—Synthesis, structure and bonding. Inorg. Chem. 2010, 49, 5173–5179. [Google Scholar] [CrossRef]
- Nesper, R. The Zintl-Klemm concept—A historical survey. Z. Anorg. Allg. Chem. 2014, 640, 2639–2648. [Google Scholar] [CrossRef]
- Nuspl, G.; Polborn, K.; Evers, J.; Landrum, G.A.; Hoffmann, R. The four-connected net in the CeCu2 structure and its ternary derivatives. Its electronic and structural properties. Inorg. Chem. 1996, 35, 6922–6932. [Google Scholar] [CrossRef]
- Savelsberg, G.; Schäfer, H. Ternaere Pnictude und Chalkogenide von Alkalimetallen und IB-bzw. IIB-Elementen. Z. Naturforsch. 1978, 33B, 370–373. [Google Scholar] [CrossRef]
- Bobev, S.; Sevov, S.C. Five ternary Zintl phases in the systems alkali metal–indium–bismuth. J. Solid State Chem. 2002, 163, 436–448. [Google Scholar] [CrossRef]
- SMART, Version 2.10; Bruker Analytical X-ray Systems, Inc.: Madison, WI, USA, 2003.
- SAINT, Version 6.45; Bruker Analytical X-ray Systems, Inc.: Madison, WI, USA, 2003.
- SADABS, Version 2.10; Bruker Analytical X-ray Systems, Inc.: Madison, WI, USA, 2003.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
Empirical Formula | Na1.95 (4)Ca1.05CdSb2 | Na1.99 (1)Sr1.01CdSb2 |
---|---|---|
Formula weight | 442.81 | 490.15 |
Temperature (K) | 170 (2) | 170 (2) |
Radiation, λ | Mo Kα, 0.71073 Å | Mo Kα, 0.71073 Å |
Space group, Z | Pmc21, 2 | Pmc21, 2 |
a (Å) | 4.6720 (11) | 4.7724 (10) |
b (Å) | 9.083 (2) | 9.0514 (19) |
c (Å) | 7.8201 (19) | 8.0470 (17) |
V (Å3) | 331.86 (14) | 347.61 (13) |
ρcal (g/cm3) | 4.43 | 4.68 |
μ (cm–1) | 120.5 | 184.0 |
Goodness-of-fit on F2 | 1.114 | 1.020 |
Unique reflections | 933 | 980 |
Refined parameters | 42 | 40 |
R1 (I > 2σI) a | 0.0263 | 0.0224 |
wR2 (I > 2σI) a | 0.0675 | 0.0409 |
R1 (all data) a | 0.0267 | 0.0240 |
wR2 (all data) a | 0.0678 | 0.0414 |
Largest diff. peak and | 1.99 and –1.10 | 1.01 and –0.83 |
hole (e–/Å3) | ||
CCDC deposition no. | 2215539 | 2215541 |
Empirical Formula | Na2.07 (1)Eu0.93CdSb2 | Na2EuCdSb2 |
---|---|---|
Formula weight | 544.81 | 553.84 |
Temperature (K) | 170 (2) | 170 (2) |
Radiation, λ | Mo Kα, 0.71073 Å | Mo Kα, 0.71073 Å |
Space group, Z | Pmc21, 2 | Pmc21, 2 |
a (Å) | 4.7478 (14) | 4.7441 (11) |
b (Å) | 9.001 (3) | 9.099 (2) |
c (Å) | 7.977 (2) | 7.9766 (18) |
V (Å3) | 340.90 (17) | 344.34 (13) |
ρcal (g/cm3) | 5.31 | 5.34 |
μ (cm–1) | 193.5 | 197.8 |
Goodness-of-fit on F2 | 1.091 | 1.070 |
Unique reflections | 953 | 969 |
Refined parameters | 40 | 38 |
R1 (I > 2σI) a | 0.0314 | 0.0168 |
wR2 (I > 2σI) a | 0.0778 | 0.0394 |
R1 (all data) a | 0.0323 | 0.0170 |
wR2 (all data) a | 0.0784 | 0.0395 |
Largest diff. peak and | 3.85 and –1.02 | 1.36 and –1.39 |
hole (e–/Å3) | ||
CCDC deposition no. | 2215538 | 2215540 |
Atom | Site | x | y | z | Ueq (Å2) |
---|---|---|---|---|---|
Na2CaCdSb2 | |||||
Ca b | 2a | 0 | 0.0569 (2) | 0.0000 (3) | 0.014 (1) |
Na1 | 2b | 1/2 | 0.4204 (5) | 0.0501 (5) | 0.025 (1) |
Na2 c | 2a | 0 | 0.3298 (4) | 0.3699 (5) | 0.019 (1) |
Sb1 | 2b | 1/2 | 0.1199 (1) | 0.2849 (1) | 0.013 (1) |
Sb2 | 2a | 0 | 0.6577 (1) | 0.2667 (1) | 0.015 (1) |
Cd | 2b | 1/2 | 0.1868 (1) | 0.6601 (1) | 0.016 (1) |
Na2SrCdSb2 | |||||
Sr b | 2a | 0 | 0.0571 (1) | 0.0000 (1) | 0.015 (1) |
Na1 | 2b | 1/2 | 0.4224 (4) | 0.0406 (6) | 0.027 (1) |
Na2 c | 2a | 0 | 0.3325 (3) | 0.3652 (4) | 0.018 (1) |
Sb1 | 2b | 1/2 | 0.1260 (1) | 0.2856 (1) | 0.014 (1) |
Sb2 | 2a | 0 | 0.6563 (1) | 0.2500 (1) | 0.016 (1) |
Cd | 2b | 1/2 | 0.1863 (1) | 0.6571 (1) | 0.018 (1) |
Na2EuCdSb2 | |||||
Eu b | 2a | 0 | 0.0558 (1) | 0.0000 (1) | 0.015 (1) |
Na1 | 2b | 1/2 | 0.4244 (7) | 0.0398 (9) | 0.032 (1) |
Na2 c | 2a | 0 | 0.3307 (4) | 0.3635 (5) | 0.023 (1) |
Sb1 | 2b | 1/2 | 0.1265 (1) | 0.2857 (1) | 0.017 (1) |
Sb2 | 2a | 0 | 0.6564 (1) | 0.2522 (1) | 0.020 (1) |
Cd | 2b | 1/2 | 0.1847 (1) | 0.6588 (1) | 0.020 (1) |
Atom Pair | Distance (Å) | Atom Pair | Distance (Å) |
---|---|---|---|
Na2CaCdSb2 | Na2SrCdSb2 | ||
Cd–Sb2 (×2) | 2.8543 (7) | Cd–Sb2 (×2) | 2.8777 (7) |
Cd–Sb1 | 2.952 (1) | Cd–Sb1 | 3.011 (1) |
Cd–Sb1 | 2.997 (1) | Cd–Sb1 | 3.039 (1) |
Sb1–Cd | 2.952 (1) | Sb1–Cd | 3.011 (1) |
Sb1–Cd | 2.997 (1) | Sb1–Cd | 3.039 (1) |
Sb2–Cd (×2) | 2.8543 (7) | Sb2–Cd (×2) | 2.8777 (7) |
Ca–Sb2 | 3.170 (2) | Sr–Sb2 | 3.289 (1) |
Ca–Sb1 (×2) | 3.278 (2) | Sr–Sb1 (×2) | 3.3712 (9) |
Ca–Sb1 (×2) | 3.296 (2) | Sr–Sb1 (×2) | 3.3790 (9) |
Ca–Cd (×2) | 3.453 (2) | Sr–Cd (×2) | 3.485 (1) |
Na1–Sb2 (×2) | 3.297 (3) | Na1–Sb2 (×2) | 3.416 (3) |
Na1–Sb1 | 3.290 (4) | Na1–Sb1 | 3.329 (4) |
Na1–Sb2 (×2) | 3.601 (3) | Na1–Sb2 (×2) | 3.608 (3) |
Na2–Sb2 | 3.086(4) | Na2–Sb2 | 3.074 (3) |
Na2–Sb1 (×2) | 3.087 (2) | Na2–Sb1 (×2) | 3.098 (2) |
Na2–Sb2 | 3.105 (4) | Na2–Sb2 | 3.098 (3) |
Atom Pair | Distance (Å) | Atom Pair | Distance (Å) |
---|---|---|---|
Na2.07 (1)Eu0.93CdSb2 | Na2EuCdSb2 | ||
Cd–Sb2 (×2) | 2.870 (1) | Cd–Sb2 (×2) | 2.8713 (7) |
Cd–Sb1 | 2.978 (2) | Cd–Sb1 | 2.993 (1) |
Cd–Sb1 | 3.022 (2) | Cd–Sb1 | 3.028 (1) |
Sb1–Cd | 2.978 (2) | Sb1–Cd | 2.993 (1) |
Sb1–Cd | 3.022 (2) | Sb1–Cd | 3.028 (1) |
Sb2–Cd (×2) | 2.870 (1) | Sb2–Cd (×2) | 2.8713 (7) |
Eu–Sb2 | 3.259 (2) | Eu–Sb2 | 3.2510 (8) |
Eu–Sb1 (×2) | 3.352 (1) | Eu–Sb1 (×2) | 3.3484 (7) |
Eu–Sb1 (×2) | 3.354 (1) | Eu–Sb1 (×2) | 3.3485 (6) |
Eu–Cd (×2) | 3.453 (1) | Eu–Cd (×2) | 3.4731 (7) |
Na1–Sb2 (×2) | 3.380 (5) | Na1–Sb2 (×2) | 3.378 (2) |
Na1–Sb1 | 3.322 (7) | Na1–Sb1 | 3.331 (3) |
Na1–Sb2 (×2) | 3.587 (5) | Na1–Sb2 (×2) | 3.623 (3) |
Na2–Sb2 | 3.063 (4) | Na2–Sb2 | 3.074 (3) |
Na2–Sb1 (×2) | 3.066 (3) | Na2–Sb1 (×2) | 3.114 (2) |
Na2–Sb2 | 3.103 (4) | Na2–Sb2 | 3.115 (4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saparov, B.; Bobev, S. Synthesis and Crystal Structure of the Zintl Phases Na2CaCdSb2, Na2SrCdSb2 and Na2EuCdSb2. Inorganics 2022, 10, 265. https://doi.org/10.3390/inorganics10120265
Saparov B, Bobev S. Synthesis and Crystal Structure of the Zintl Phases Na2CaCdSb2, Na2SrCdSb2 and Na2EuCdSb2. Inorganics. 2022; 10(12):265. https://doi.org/10.3390/inorganics10120265
Chicago/Turabian StyleSaparov, Bayram, and Svilen Bobev. 2022. "Synthesis and Crystal Structure of the Zintl Phases Na2CaCdSb2, Na2SrCdSb2 and Na2EuCdSb2" Inorganics 10, no. 12: 265. https://doi.org/10.3390/inorganics10120265
APA StyleSaparov, B., & Bobev, S. (2022). Synthesis and Crystal Structure of the Zintl Phases Na2CaCdSb2, Na2SrCdSb2 and Na2EuCdSb2. Inorganics, 10(12), 265. https://doi.org/10.3390/inorganics10120265