Therapeutic Properties of Vanadium Complexes
Abstract
:1. Introduction
2. Vanadium as an Enzyme Switch
3. Insulin-Mimetic Activity of Vanadium Compounds
4. Osteogenic Activity of Vanadium Compounds
5. Anticancer Potency
6. Antimicrobial, Antiviral, Antiparasitic, and Antifungal Activities of Vanadium Compounds
7. Vanadium Compounds’ Effect in the Cardiovascular System
8. Vanadium Toxicity
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fontani, M.; Costa, M.; Orna, M.V. The Lost Elements: The Periodic Table’s Shadow Side; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Barceloux, D.G.; Barceloux, D. Vanadium. J. Toxicol. Clin. Toxicol. 1999, 37, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Caswell, L.R. Andrés del Río, Alexander Von Humboldt, and the twice-discovered element. Bull. Hist. Chem. 2003, 28, 35–41. [Google Scholar]
- Pessoa, J.C. Thirty years through vanadium chemistry. J. Inorg. Biochem. 2015, 147, 4–24. [Google Scholar] [CrossRef] [PubMed]
- Parnell, J. Snowball Earth to Global Warming: Coupled vanadium-carbonaceous deposits in the Cryogenian-Cambrian. Ore Geol. Rev. 2022, 145, 104876. [Google Scholar] [CrossRef]
- Pessoa, J.C.; Santos, M.F.; Correia, I.; Sanna, D.; Sciortino, G.; Garribba, E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord. Chem. Rev. 2021, 449, 214192. [Google Scholar] [CrossRef]
- Sanna, D.; Micera, G.; Garribba, E. On the transport of vanadium in blood serum. Inorg. Chem. 2009, 48, 5747–5757. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Sakurai, H.; Crans, D.C.; Micera, G.; Garribba, E. Structural and redox requirements for the action of anti-diabetic vanadium compounds. Dalton Trans. 2014, 43, 6965–6972. [Google Scholar] [CrossRef]
- Maurya, M.R.; Kumar, A.; Pessoa, J.C. Vanadium complexes immobilized on solid supports and their use as catalysts for oxidation and functionalization of alkanes and alkenes. Coord. Chem. Rev. 2011, 255, 2315–2344. [Google Scholar] [CrossRef]
- Maurya, M.R.; Uprety, B.; Avecilla, F.; Adão, P.; Pessoa, J.C. Vanadium (V) complexes of a tripodal ligand, their characterisation and biological implications. Dalton Trans. 2015, 44, 17736–17755. [Google Scholar] [CrossRef]
- Pessoa, J.C.; Etcheverry, S.; Gambino, D. Vanadium compounds in medicine. Coord. Chem. Rev. 2015, 301, 24–48. [Google Scholar] [CrossRef]
- Jakusch, T.; Pessoa, J.C.; Kiss, T. The speciation of vanadium in human serum. Coord. Chem. Rev. 2011, 255, 2218–2226. [Google Scholar] [CrossRef]
- Correia, I.; Pessoa, J.C.; Duarte, M.T.; Da Piedade, M.F.M.; Jackush, T.; Kiss, T.; Castro, M.M.C.; Geraldes, C.F.; Avecilla, F. Vanadium (IV and V) complexes of Schiff bases and reduced Schiff bases derived from the reaction of aromatic o-hydroxyaldehydes and diamines: Synthesis, characterisation and solution studies. Eur. J. Inorg. Chem. 2005, 732–744. [Google Scholar] [CrossRef] [Green Version]
- Buglyó, P.; Culeddu, N.; Kiss, T.; Micera, G.; Sanna, D. Vanadium (IV) and vanadium (V) complexes of deferoxamine B in aqueous solution. J. Inorg. Biochem. 1995, 60, 45–59. [Google Scholar] [CrossRef]
- Del Carpio, E.; Hernández, L.; Ciangherotti, C.; Coa, V.V.; Jiménez, L.; Lubes, V.; Lubes, G. Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications. Coord. Chem. Rev. 2018, 372, 117–140. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, N.S.; Sharfalddin, A.A.; Domyati, D.; Basaleh, A.S.; Hussien, M.A. Experiment versus theory of copper (II) complexes based imidazole derivatives as anti-cancer agents. J. Indian Chem. Soc. 2022, 99, 100692. [Google Scholar] [CrossRef]
- Babgi, B.A.; Alsayari, J.; Alenezi, H.M.; Abdellatif, M.H.; Eltayeb, N.E.; Emwas, A.-H.M.; Jaremko, M.; Hussien, M.A. Alteration of anticancer and protein-binding properties of gold (I) Alkynyl by phenolic Schiff bases moieties. Pharmaceutics 2021, 13, 461. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, J.I.; Pichiri, G.; Piludu, M.; Fais, S.; Orrù, G.; Congiu, T.; Piras, M.; Faa, G.; Fanni, D.; Dalla Torre, G. Thymosin β4 Is an Endogenous Iron Chelator and Molecular Switcher of Ferroptosis. Int. J. Mol. Sci. 2022, 23, 551. [Google Scholar] [CrossRef]
- Basaleh, A.S.; Howsaui, H.B.; Sharfalddin, A.A.; Hussien, M.A. Substitution effect on new Schiff base ligand in complexation with some divalent Metal ion; Synthesis, Characterization, DFT and Cytotoxicity Studies. Results Chem. 2022, 4, 100445. [Google Scholar] [CrossRef]
- Barrio, A.D.; Etcheverry, B.S. Potential use of vanadium compounds in therapeutics. Curr. Med. Chem. 2010, 17, 3632–3642. [Google Scholar] [CrossRef]
- Semiz, S. Vanadium as potential therapeutic agent for COVID-19: A focus on its antiviral, antiinflamatory, and antihyperglycemic effects. J. Trace Elem. Med. Biol. 2022, 69, 126887. [Google Scholar] [CrossRef]
- Brownsey, R.W.; Dong, G.W. Evidence for selective effects of vanadium on adipose cell metabolism involving actions on cAMP-dependent protein kinase. In Vanadium Compounds: Biochemical and Therapeutic Applications; Springer: Berlin, Germany, 1995; pp. 131–137. [Google Scholar]
- Clark, A.S.; Fagan, J.; Mitch, W. Selectivity of the insulin-like actions of vanadate on glucose and protein metabolism in skeletal muscle. Biochem. J. 1985, 232, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Ścibior, A. Overview of Research on Vanadium-Quercetin Complexes with a Historical Outline. Antioxidants 2022, 11, 790. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-D.; Zhang, G.-H.; Xu, R.; Wang, Y.; Chou, K.-C. Fabrication of pure V2O3 powders by reducing V2O5 powders with CO-CO2 mixed gases. Ceram. Int. 2019, 45, 2117–2123. [Google Scholar] [CrossRef]
- Sharfalddin, A.A.; Emwas, A.H.; Jaremko, M.; Hussien, M.A. Synthesis and Theoretical Calculations of Metal–Antibiotic Chelation with Thiamphenicol; In vitro DNA and HSA Binding, Molecular Docking, and Cytotoxic Studies. N. J. Chem. 2021, 45, 9598–9613. [Google Scholar] [CrossRef]
- Sharfalddin, A.A.; Emwas, A.-H.; Jaremko, M.; Hussien, M.A. Complexation of uranyl (UO2) 2+ with bidentate ligands: XRD, spectroscopic, computational, and biological studies. PLoS ONE 2021, 16, e0256186. [Google Scholar] [CrossRef]
- García-García, A.; Noriega, L.; Meléndez-Bustamante, F.J.; Castro, M.E.; Sánchez-Gaytán, B.L.; Choquesillo-Lazarte, D.; González-Vergara, E.; Rodríguez-Diéguez, A. 2-Aminopyrimidinium Decavanadate: Experimental and Theoretical Characterization, Molecular Docking, and Potential Antineoplastic Activity. Inorganics 2021, 9, 67. [Google Scholar] [CrossRef]
- Lima, L.M.; Belian, M.F.; Silva, W.E.; Postal, K.; Kostenkova, K.; Crans, D.C.; Rossiter, A.K.F.; da Silva Júnior, V.A. Vanadium (IV)-diamine complex with hypoglycemic activity and a reduction in testicular atrophy. J. Inorg. Biochem. 2021, 216, 111312. [Google Scholar] [CrossRef]
- Crans, D.C.; Smee, J.J.; Gaidamauskas, E.; Yang, L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 2004, 104, 849–902. [Google Scholar] [CrossRef]
- Pessoa, J.C.; Garribba, E.; Santos, M.F.; Santos-Silva, T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord. Chem. Rev. 2015, 301, 49–86. [Google Scholar] [CrossRef]
- Korbecki, J.; Baranowska-Bosiacka, I.; Gutowska, I.; Chlubek, D. Biochemical and medical importance of vanadium compounds. Acta Biochim. Pol. 2012, 59, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Kiersztan, A.; Modzelewska, A.; Jarzyna, R.; Jagielska, E.; Bryła, J. Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbits. Biochem. Pharmacol. 2002, 63, 1371–1382. [Google Scholar] [CrossRef] [PubMed]
- Fantus, I.G.; Kadota, S.; Deragon, G.; Foster, B.; Posner, B.I. Pervanadate [peroxide (s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry 1989, 28, 8864–8871. [Google Scholar] [CrossRef] [PubMed]
- Schieven, G.L.; Kirihara, J.M.; Myers, D.E.; Ledbetter, J.A.; Uckun, F.M. Reactive oxygen intermediates activate NF-kappa B in a tyrosine kinase-dependent mechanism and in combination with vanadate activate the p56lck and p59fyn tyrosine kinases in human lymphocytes. Blood 1993, 5, 1212–1220. [Google Scholar] [CrossRef] [Green Version]
- Boruah, J.J.; Kalita, D.; Das, S.P.; Paul, S.; Islam, N.S. Polymer-anchored peroxo compounds of vanadium (V) and molybdenum (VI): Synthesis, stability, and their activities with alkaline phosphatase and catalase. Inorg. Chem. 2011, 50, 8046–8062. [Google Scholar] [CrossRef] [PubMed]
- Parente, J.E.; Naso, L.G.; Jori, K.; Franca, C.A.; da Costa Ferreira, A.M.; Williams, P.A.; Ferrer, E.G. In vitro experiments and infrared spectroscopy analysis of acid and alkaline phosphatase inhibition by vanadium complexes. N. J. Chem. 2019, 43, 17603–17619. [Google Scholar] [CrossRef]
- Shehzad, S. The potential effect of vanadium compounds on glucose-6-phosphatase. Biosci. Horiz. Int. J. Stud. Res. 2013, 6, hzt002. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Kim, S.M. Synthesis, characterization, antioxidant and anti-diabetic activities of a novel protein–vanadium complex. Appl. Organomet. Chem. 2019, 33, e5102. [Google Scholar] [CrossRef]
- Ashiq, U.; Jamal, R.A.; Mahroof-Tahir, M.; Maqsood, Z.T.; Khan, K.M.; Omer, I.; Choudhary, M.I. Enzyme inhibition, radical scavenging, and spectroscopic studies of vanadium (IV)–hydrazide complexes. J. Enzym. Inhib. Med. Chem. 2009, 24, 1336–1343. [Google Scholar] [CrossRef] [Green Version]
- Platt, D.C.; Rink, J.; Braich, K.; McLauchlan, C.C.; Jones, M.A. 2′-3′-Cyclic Nucleotide 3′-Phosphodiesterase Inhibition by Organometallic Vanadium Complexes: A Potential New Paradigm for Studying CNS Degeneration. Brain Sci. 2021, 11, 588. [Google Scholar] [CrossRef]
- Percival, M.D.; Doherty, K.; Gresser, M.J. Inhibition of phosphoglucomutase by vanadate. Biochemistry 1990, 29, 2764–2769. [Google Scholar] [CrossRef]
- Aureliano, M.; Gumerova, N.I.; Sciortino, G.; Garribba, E.; McLauchlan, C.C.; Rompel, A.; Crans, D.C. Polyoxidovanadates’ interactions with proteins: An overview. Coord. Chem. Rev. 2022, 454, 214344. [Google Scholar] [CrossRef]
- Buglyó, P.; Crans, D.C.; Nagy, E.M.; Lindo, R.L.; Yang, L.; Smee, J.J.; Jin, W.; Chi, L.-H.; Godzala, M.E.; Willsky, G.R. Aqueous chemistry of the vanadiumIII (VIII) and the VIII− dipicolinate systems and a comparison of the effect of three oxidation states of vanadium compounds on diabetic hyperglycemia in rats. Inorg. Chem. 2005, 44, 5416–5427. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.G.; Davis, M.G.; Howard, B.W.; Pokross, M.; Rastogi, V.; Diven, C.; Greis, K.D.; Eby-Wilkens, E.; Maier, M.; Evdokimov, A. Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium (VO4) as the active component. J. Inorg. Biochem. 2003, 96, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Rehder, D. Bioinorganic Vanadium Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 30. [Google Scholar]
- Rehder, D. Vanadium in health issues. Chem.Texts 2018, 4, 1–7. [Google Scholar] [CrossRef]
- Mehdi, M.Z.; Pandey, S.K.; Théberge, J.-F.; Srivastava, A.K. Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem. Biophys. 2006, 44, 73–81. [Google Scholar] [CrossRef]
- Mohammad, A.; Sharma, V.; McNeill, J.H. Vanadium increases GLUT4 in diabetic rat skeletal muscle. Mol. Cell. Biochem. 2002, 233, 139–143. [Google Scholar] [CrossRef]
- Kenner, K.A.; Hill, D.E.; Olefsky, J.M.; Kusari, J. Regulation of protein tyrosine phosphatases by insulin and insulin-like growth factor I. J. Biol. Chem. 1993, 268, 25455–25462. [Google Scholar] [CrossRef]
- Yang, X.; Wang, K.; Lu, J.; Crans, D.C. Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. Coord. Chem. Rev. 2003, 237, 103–111. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Cantley, J.; Ashcroft, F.M. Q&A: Insulin secretion and type 2 diabetes: Why do β-cells fail? BMC Biol. 2015, 13, 1–7. [Google Scholar]
- Lyonnet, B. L’emploi therapeutique des derives du vanadium. Presse Med. 1899, 1, 191–192. [Google Scholar]
- Thompson, K.H.; Orvig, C. Vanadium in diabetes: 100 years from Phase 0 to Phase I. J. Inorg. Biochem. 2006, 100, 1925–1935. [Google Scholar] [CrossRef] [PubMed]
- Jakusch, T.; Kiss, T. In vitro study of the antidiabetic behavior of vanadium compounds. Coord. Chem. Rev. 2017, 351, 118–126. [Google Scholar] [CrossRef]
- Mehtab, S.; Gonçalves, G.; Roy, S.; Tomaz, A.I.; Santos-Silva, T.; Santos, M.F.; Romão, M.J.; Jakusch, T.; Kiss, T.; Pessoa, J.C. Interaction of vanadium (IV) with human serum apo-transferrin. J. Inorg. Biochem. 2013, 121, 187–195. [Google Scholar] [CrossRef]
- Correia, I.; Jakusch, T.; Cobbinna, E.; Mehtab, S.; Tomaz, I.; Nagy, N.V.; Rockenbauer, A.; Pessoa, J.C.; Kiss, T. Evaluation of the binding of oxovanadium (IV) to human serum albumin. Dalton Trans. 2012, 41, 6477–6487. [Google Scholar] [CrossRef] [PubMed]
- Adachi, Y.; Yoshida, J.; Kodera, Y.; Katoh, A.; Takada, J.; Sakurai, H. Bis (allixinato) oxovanadium (IV) complex is a potent antidiabetic agent: Studies on structure−activity relationship for a series of hydroxypyrone−vanadium complexes. J. Med. Chem. 2006, 49, 3251–3256. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.-B.; Yang, X.-D. Synthesis, characterization and anti-diabetic therapeutic potential of a new benzyl acid-derivatized kojic acid vanadyl complex. Biometals 2012, 25, 1261–1268. [Google Scholar] [CrossRef]
- Reul, B.A.; Amin, S.S.; Buchet, J.P.; Ongemba, L.N.; Crans, D.C.; Brichard, S.M. Effects of vanadium complexes with organic ligands on glucose metabolism: A comparison study in diabetic rats. Br. J. Pharmacol. 1999, 126, 467–477. [Google Scholar] [CrossRef] [Green Version]
- McNeill, J.H.; Yuen, V.; Hoveyda, H.; Orvig, C. Bis (maltolato) oxovanadium (IV) is a potent insulin mimic. J. Med. Chem. 1992, 35, 1489–1491. [Google Scholar] [CrossRef]
- Thompson, K.H.; Liboiron, B.D.; Sun, Y.; Bellman, K.D.; Setyawati, I.A.; Patrick, B.O.; Karunaratne, V.; Rawji, G.; Wheeler, J.; Sutton, K. Preparation and characterization of vanadyl complexes with bidentate maltol-type ligands; in vivo comparisons of anti-diabetic therapeutic potential. JBIC J. Biol. Inorg. Chem. 2003, 8, 66–74. [Google Scholar] [CrossRef]
- Costa Pessoa, J.; Tomaz, I. Transport of therapeutic vanadium and ruthenium complexes by blood plasma components. Curr. Med. Chem. 2010, 17, 3701–3738. [Google Scholar] [CrossRef] [PubMed]
- Goldfine, A.B.; Simonson, D.C.; Folli, F.; Patti, M.-E.; Kahn, C.R. Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J. Clin. Endocrinol. Metab. 1995, 80, 3311–3320. [Google Scholar] [PubMed]
- Rehder, D.; Costa Pessoa, J.; Geraldes, C.F.; Castro, M.M.; Kabanos, T.; Kiss, T.; Meier, B.; Micera, G.; Pettersson, L.; Rangel, M. In vitro study of the insulin-mimetic behaviour of vanadium (IV, V) coordination compounds. JBIC J. Biol. Inorg. Chem. 2002, 7, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, J.; Shteinman, A.A.; Degerman, E.; Enyedy, E.A.; Kiss, T.; Behrens, U.; Rehder, D.; Nordlander, E. Salicylamide and salicylglycine oxidovanadium complexes with insulin-mimetic properties. J. Inorg. Biochem. 2011, 105, 1795–1800. [Google Scholar] [CrossRef]
- Afkhami-Arekani, M.; Karimi, M.; Mohammadi Mohammad, S.; Nourani, F. Effect of sodium metavanadate supplementation on lipid and glucose metabolism biomarkers in type e diabetic patients. Malays J. Nutr 2008, 14, 113–119. [Google Scholar]
- Goldfine, A.B.; Patti, M.-E.; Zuberi, L.; Goldstein, B.J.; LeBlanc, R.; Landaker, E.J.; Jiang, Z.Y.; Willsky, G.R.; Kahn, C.R. Metabolic effects of vanadyl sulfate in humans with non—Insulin-dependent diabetes mellitus: In vivo and in vitro studies. Metabolism 2000, 49, 400–410. [Google Scholar] [CrossRef]
- Boden, G.; Chen, X.; Ruiz, J.; van Rossum, G.D.; Turco, S. Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non—Insulin-dependent diabetes mellitus. Metabolism 1996, 45, 1130–1135. [Google Scholar] [CrossRef]
- Bariyanga, J.; Luyt, A. Synthesis, Fourier transform infrared, nuclear magnetic resonance and thermal analysis of sodium and platinum complexes of 6-mercaptopurine. J. Mol. Struct. 2001, 559, 49–54. [Google Scholar] [CrossRef]
- Halberstam, M.; Cohen, N.; Shlimovich, P.; Rossetti, L.; Shamoon, H. Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes 1996, 45, 659–666. [Google Scholar] [CrossRef]
- Fereshteh, B.; Ali-Reza, A.; Nastaran, M.; Mohsen, T.; Mehdi, M.S. Evaluating the effects of vanadyl sulfate on biomarkers of oxidative stress and inflammation in renal tissue of rats with diabetes type 2. Braz. J. Pharm. Sci. 2020, 56, 18–56. [Google Scholar] [CrossRef]
- Shah, S.Z.H.; Naveed, A.K.; Rashid, A. Effects of oral vanadium on glycaemic and lipid profile in rats. J. Pak. Med. Assoc. 2016, 66, 1592–1596. [Google Scholar]
- Jacques-Camarena, O.; González-Ortiz, M.; Martínez-Abundis, E.; López-Madrueño, J.P.; Medina-Santillán, R. Effect of vanadium on insulin sensitivity in patients with impaired glucose tolerance. Ann. Nutr. Metab. 2008, 53, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Kiss, T.; Jakusch, T.; Hollender, D.; Dörnyei, Á.; Enyedy, É.A.; Pessoa, J.C.; Sakurai, H.; Sanz-Medel, A. Biospeciation of antidiabetic VO (IV) complexes. Coord. Chem. Rev. 2008, 252, 1153–1162. [Google Scholar] [CrossRef]
- Barrio, D.; Etcheverry, S. Vanadium and bone development: Putative signaling pathways. Can. J. Physiol. Pharmacol. 2006, 84, 677–686. [Google Scholar] [CrossRef]
- Glenske, K.; Donkiewicz, P.; Köwitsch, A.; Milosevic-Oljaca, N.; Rider, P.; Rofall, S.; Franke, J.; Jung, O.; Smeets, R.; Schnettler, R. Applications of metals for bone regeneration. Int. J. Mol. Sci. 2018, 19, 826. [Google Scholar] [CrossRef]
- Cortizo, A.M.; Etcheverry, S.B. Vanadium derivatives act as growth factor—Mimetic compounds upon differentiation and proliferation of osteoblast-like UMR106 cells. Mol. Cell. Biochem. 1995, 145, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Tiago, D.M. Role of Insulin and Insulin-like Peptides in Bone Formation: Identification of Bone-Specific Target Genes and Regulatory Mechanisms, and Characterization of the Insulin-Mimetic Effect of Vanadium; Universidade do Algarve (Portugal): Faro, Portugal, 2008. [Google Scholar]
- Cortizo, A.M.; Molinuevo, M.S.; Barrio, D.A.; Bruzzone, L. Osteogenic activity of vanadyl (IV)–ascorbate complex: Evaluation of its mechanism of action. Int. J. Biochem. Cell Biol. 2006, 38, 1171–1180. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Zhou, H.; Wang, J.; Liu, W.; Cheng, M.; Peng, X.; Qin, H.; Wei, J.; Jin, P.; Li, J. Nano vanadium dioxide films deposited on biomedical titanium: A novel approach for simultaneously enhanced osteogenic and antibacterial effects. Artif. Cells Nanomed. Biotechnol. 2018, 46, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Lohberger, B.; Eck, N.; Glaenzer, D.; Kaltenegger, H.; Leithner, A. Surface Modifications of Titanium Aluminium Vanadium Improve Biocompatibility and Osteogenic Differentiation Potential. Materials 2021, 14, 1574. [Google Scholar] [CrossRef]
- Ferrer, E.G.; Salinas, M.V.; Correa, M.J.; Naso, L.; Barrio, D.A.; Etcheverry, S.B.; Lezama, L.; Rojo, T.; Williams, P.A. Synthesis, characterization, antitumoral and osteogenic activities of quercetin vanadyl (IV) complexes. JBIC J. Biol. Inorg. Chem. 2006, 11, 791–801. [Google Scholar] [CrossRef]
- Cortizo, A.M.; Ruderman, G.; Mazzini, F.N.; Molinuevo, M.S.; Mogilner, I.G. Novel vanadium-loaded ordered collagen scaffold promotes osteochondral differentiation of bone marrow progenitor cells. Int. J. Biomater. 2016, 2016, 9191ec. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferretti, V.A.; León, I.E. An Overview of Vanadium and Cell Signaling in Potential Cancer Treatments. Inorganics 2022, 10, 47. [Google Scholar] [CrossRef]
- Evangelou, A.M. Vanadium in cancer treatment. Crit. Rev. Oncol./Hematol. 2002, 42, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Koepf-Maier, P.; Koepf, H. Non-platinum group metal antitumor agents. History, current status, and perspectives. Chem. Rev. 1987, 87, 1137–1152. [Google Scholar] [CrossRef]
- Narla, R.K.; Dong, Y.; Klis, D.; Uckun, F.M. Bis (4, 7-dimethyl-1, 10-phenanthroline) sulfatooxovanadium (IV) as a novel antileukemic agent with matrix metalloproteinase inhibitory activity. Clin. Cancer Res. 2001, 7, 1094–1101. [Google Scholar]
- Banerjee, A.; Dash, S.P.; Mohanty, M.; Sahu, G.; Sciortino, G.; Garribba, E.; Carvalho, M.F.N.; Marques, F.; Costa Pessoa, J.O.; Kaminsky, W. New VIV, VIVO, VVO, and VVO2 systems: Exploring their interconversion in solution, protein interactions, and cytotoxicity. Inorg. Chem. 2020, 59, 14042–14057. [Google Scholar] [CrossRef] [PubMed]
- Rozzo, C.; Sanna, D.; Garribba, E.; Serra, M.; Cantara, A.; Palmieri, G.; Pisano, M. Antitumoral effect of vanadium compounds in malignant melanoma cell lines. J. Inorg. Biochem. 2017, 174, 14–24. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-Metwaly, N.M.; Alzahrani, S.O.; Bawazeer, A.M.; Shaaban, S.; Adam, M.S.S. Targeting ctDNA binding and elaborated in-vitro assessments concerning novel Schiff base complexes: Synthesis, characterization, DFT and detailed in-silico confirmation. J. Mol. Liq. 2021, 322, 114977. [Google Scholar] [CrossRef]
- Biswal, D.; Pramanik, N.R.; Chakrabarti, S.; Drew, M.G.; Acharya, K.; Chandra, S. Syntheses, crystal structures, DFT calculations, protein interaction and anticancer activities of water soluble dipicolinic acid-imidazole based oxidovanadium (iv) complexes. Dalton Trans. 2017, 46, 16682–16702. [Google Scholar] [CrossRef]
- Nunes, P.; Yildizhan, Y.; Adiguzel, Z.; Marques, F.; Costa Pessoa, J.; Acilan, C.; Correia, I. Copper (II) and oxidovanadium (IV) complexes of chromone Schiff bases as potential anticancer agents. JBIC J. Biol. Inorg. Chem. 2022, 27, 89–109. [Google Scholar] [CrossRef]
- Ni, L.; Zhao, H.; Tao, L.; Li, X.; Zhou, Z.; Sun, Y.; Chen, C.; Wei, D.; Liu, Y.; Diao, G. Synthesis, in vitro cytotoxicity, and structure–activity relationships (SAR) of multidentate oxidovanadium (iv) complexes as anticancer agents. Dalton Trans. 2018, 47, 10035–10045. [Google Scholar] [CrossRef]
- Sharfalddin, A.A.; Hussien, M.A. Bivalence Metal Complexes of Antithyroid Drug Carbimazole; Synthesis, Characterization, Computational simulation, and Biological Studies. J. Mol. Struct. 2020, 1228, 129725. [Google Scholar] [CrossRef]
- Alomari, F.Y.; Sharfalddin, A.A.; Abdellattif, M.H.; Domyati, D.; Basaleh, A.S.; Hussien, M.A. QSAR Modeling, Molecular Docking and Cytotoxic Evaluation for Novel Oxidovanadium(IV) Complexes as Colon Anticancer Agents. Molecules 2022, 27, 649. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Gong, S.; Fu, D. A spectroscopic study on the DNA binding behavior of the anticancer drug dacarbazine. Spectrosc. Lett. 2002, 35, 751–756. [Google Scholar] [CrossRef]
- Basaleh, A.S.; Alomari, F.Y.; Sharfalddin, A.A.; Al-Radadi, N.S.; Domyati, D.; Hussien, M.A. Theoretical Investigation by DFT and Molecular Docking of Synthesized Oxidovanadium (IV)-Based Imidazole Drug Complexes as Promising Anticancer Agents. Molecules 2022, 27, 2796. [Google Scholar] [CrossRef]
- Inamdar, P.; Angappan, S. DNA binding behaviour of mixed ligand vanadium (V) complex based on novel tridentate hydrazone and benzhydroxamic acid ligand systems. Appl. Organomet. Chem. 2017, 31, e3573. [Google Scholar] [CrossRef]
- Maia, P.I.d.S.; Pavan, F.R.; Leite, C.Q.; Lemos, S.S.; de Sousa, G.F.; Batista, A.A.; Nascimento, O.R.; Ellena, J.; Castellano, E.E.; Niquet, E. Vanadium complexes with thiosemicarbazones: Synthesis, characterization, crystal structures and anti-Mycobacterium tuberculosis activity. Polyhedron 2009, 28, 398–406. [Google Scholar] [CrossRef]
- Collins, F.M.; Klayman, D.L.; Morrison, N.E. Correlations between structure and antimycobacterial activity in a series of 2-acetylpyridine thiosemicarbazones. Microbiology 1982, 128, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.D. Vanadium. In Handbook on the Toxicology of Metals; Academic Press: Cambridge, MA, USA, 2022; Volume 11, pp. 937–961. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Guo, G.; Cheng, T.; Peng, X.; Mao, X.; Li, J.; Zhang, X. A functionalized surface modification with vanadium nanoparticles of various valences against implant-associated bloodstream infection. Int. J. Nanomed. 2017, 12, 3121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sridhar, C.; Gunvanthrao Yernale, N.; Prasad, M. Synthesis, spectral characterization, and antibacterial and antifungal studies of PANI/V2O5 nanocomposites. Int. J. Chem. Eng. 2016, 2016, 3479248. [Google Scholar] [CrossRef] [Green Version]
- He, L.-Y.; Qiu, X.-Y.; Cheng, J.-Y.; Liu, S.-J.; Wu, S.-M. Synthesis, characterization and crystal structures of vanadium (V) complexes derived from halido-substituted tridentate hydrazone compounds with antimicrobial activity. Polyhedron 2018, 156, 105–110. [Google Scholar] [CrossRef]
- Sheikhshoaie, I.; Ebrahimipour, S.Y.; Lotfi, N.; Mague, J.T.; Khaleghi, M. Synthesis, spectral characterization, X-ray crystal structure and antimicrobial activities of two cis dioxido-vanadium (V) complexes incorporating unsymmetrical dimalonitrile-based (NNO) Schiff base ligands. Inorg. Chim. Acta 2016, 442, 151–157. [Google Scholar] [CrossRef]
- D’Cruz, O.J.; Dong, Y.; Uckun, F.M. Potent dual anti-HIV and spermicidal activities of novel oxovanadium (V) complexes with thiourea non-nucleoside inhibitors of HIV-1 reverse transcriptase. Biochem. Biophys. Res. Commun. 2003, 302, 253–264. [Google Scholar] [CrossRef]
- Sun, R.W.-Y.; Ma, D.-L.; Wong, E.L.-M.; Che, C.-M. Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Trans. 2007, 43, 4884–4892. [Google Scholar]
- Shigeta, S.; Mori, S.; Kodama, E.; Kodama, J.; Takahashi, K.; Yamase, T. Broad spectrum anti-RNA virus activities of titanium and vanadium substituted polyoxotungstates. Antivir. Res. 2003, 58, 265–271. [Google Scholar] [CrossRef]
- Scior, T.; Abdallah, H.H.; Mustafa, S.F.Z.; Guevara-García, J.A.; Rehder, D. Are vanadium complexes druggable against the main protease mpro of sars-cov-2?–a computational approach. Inorg. Chim. Acta 2021, 519, 120287. [Google Scholar] [CrossRef]
- Vlasiou, M.C.; Pafti, K.S. Screening possible drug molecules for Covid-19. The example of vanadium (III/IV/V) complex molecules with computational chemistry and molecular docking. Comput. Toxicol. 2021, 18, 100157. [Google Scholar] [CrossRef] [PubMed]
- Miloud, M.; El-ajaily, M.; Al-noor, T.; Al-barki, N. Antifungal activity of some mixed ligand complexes incorporating Schiff bases. J. Bacteriol Mycol 2020, 7, 1122. [Google Scholar]
- Maurya, M.R.; Bharti, N. Synthesis, thermal and spectral studies of oxoperoxo and dioxo complexes of vanadium (V), molybdenum (VI) and tungsten (VI) with 2-(α-hydroxyalkyl/aryl) benzimidazole. Transit. Met. Chem. 1999, 24, 389–393. [Google Scholar] [CrossRef]
- Maurya, M.R.; Haldar, C.; Khan, A.A.; Azam, A.; Salahuddin, A.; Kumar, A.; Costa Pessoa, J. Synthesis, characterization, catalytic and antiamoebic activity of vanadium complexes of binucleating bis (dibasic tridentate ONS donor) ligand systems. Eur. J. Inorg. Chem. 2012, 2012, 2560–2577. [Google Scholar] [CrossRef]
- Ogunlaja, A.S.; Chidawanyika, W.; Antunes, E.; Fernandes, M.A.; Nyokong, T.; Torto, N.; Tshentu, Z.R. Oxovanadium (IV)-catalysed oxidation of dibenzothiophene and 4, 6-dimethyldibenzothiophene. Dalton Trans. 2012, 41, 13908–13918. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Machado, P.; Mota, V.Z.; de Lima Cavalli, A.C.; de Carvalho, G.S.G.; Da Silva, A.D.; Gameiro, J.; Cuin, A.; Coimbra, E.S. High selective antileishmanial activity of vanadium complex with stilbene derivative. Acta Trop. 2015, 148, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.; Varela, J.; Correia, I.; Birriel, E.; Castiglioni, J.; Moreno, V.; Pessoa, J.C.; Cerecetto, H.; González, M.; Gambino, D. A new series of heteroleptic oxidovanadium (IV) compounds with phenanthroline-derived co-ligands: Selective Trypanosoma cruzi growth inhibitors. Dalton Trans. 2013, 42, 11900–11911. [Google Scholar] [CrossRef] [PubMed]
- Benítez, J.; Correia, I.; Becco, L.; Fernández, M.; Garat, B.; Gallardo, H.; Conte, G.; Kuznetsov, M.L.; Neves, A.; Moreno, V. Searching for Vanadium-Based Prospective Agents against Trypanosoma cruzi: Oxidovanadium (IV) Compounds with Phenanthroline Derivatives as Ligands. Z. Anorg. Allg. Chem. 2013, 639, 1417–1425. [Google Scholar] [CrossRef]
- Tiago, T.; Martel, P.; Gutiérrez-Merino, C.; Aureliano, M. Binding modes of decavanadate to myosin and inhibition of the actomyosin ATPase activity. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2007, 1774, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Aureliano, M. Decavanadate toxicology and pharmacological activities: V10 or V1, both or none? Oxidative Med. Cell. Longev. 2016, 2016, 22–45. [Google Scholar] [CrossRef] [Green Version]
- Aureliano, M.; Crans, D.C. Decavanadate (V10O286-) and oxovanadates: Oxometalates with many biological activities. J. Inorg. Biochem. 2009, 103, 536–546. [Google Scholar] [CrossRef]
- Rehder, D. The potentiality of vanadium in medicinal applications. Future Med. Chem. 2012, 4, 1823–1837. [Google Scholar] [CrossRef]
- Levina, A.; Lay, P.A. Stabilities and biological activities of vanadium drugs: What is the nature of the active species? Chem. Asian J. 2017, 12, 1692–1699. [Google Scholar] [CrossRef]
- Mbatha, B.; Khathi, A.; Sibiya, N.; Booysen, I.; Mangundu, P.; Ngubane, P. Cardio-protective effects of a dioxidovanadium (V) complex in male sprague–dawley rats with streptozotocin-induced diabetes. BioMetals 2021, 34, 161–173. [Google Scholar] [CrossRef]
- Bhanot, S.; McNeill, J.H. Vanadyl sulfate lowers plasma insulin and blood pressure in spontaneously hypertensive rats. Hypertension 1994, 24, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuiyan, M.S.; Takada, Y.; Shioda, N.; Moriguchi, S.; Kasahara, J.; Fukunaga, K. Cardioprotective effect of vanadyl sulfate on ischemia/reperfusion-induced injury in rat heart in vivo is mediated by activation of protein kinase B and induction of FLICE-inhibitory protein. Cardiovasc. Drug Rev. 2008, 26, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Takada, Y.; Hashimoto, M.; Kasahara, J.; Aihara, K.; Fukunaga, K. Cytoprotective effect of sodium orthovanadate on ischemia/reperfusion-induced injury in the rat heart involves Akt activation and inhibition of fodrin breakdown and apoptosis. J. Pharmacol. Exp. Ther. 2004, 311, 1249–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhanot, S.; Bryer-Ash, M.; Cheung, A.; McNeill, J.H. Bis (maltolato) oxovanadium (IV) attenuates hyperinsulinemia and hypertension in spontaneously hypertensive rats. Diabetes 1994, 43, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Liem, D.A.; Gho, C.C.; Gho, B.C.; Kazim, S.; Manintveld, O.C.; Verdouw, P.D.; Duncker, D. The tyrosine phosphatase inhibitor bis (maltolato) oxovanadium attenuates myocardial reperfusion injury by opening ATP-sensitive potassium channels. J. Pharmacol. Exp. Ther. 2004, 309, 1256–1262. [Google Scholar] [CrossRef] [Green Version]
- Yuen, V.G.; Orvig, C.; Thompson, K.H.; McNeill, J.H. Improvement in cardiac dysfunction in streptozotocin-induced diabetic rats following chronic oral administration of bis (maltolato) oxovanadium (IV). Can. J. Physiol. Pharmacol. 1993, 71, 270–276. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.; Shioda, N.; Shibuya, M.; Iwabuchi, Y.; Fukunaga, K. Activation of endothelial nitric oxide synthase by a vanadium compound ameliorates pressure overload-induced cardiac injury in ovariectomized rats. Hypertension 2009, 53, 57–63. [Google Scholar] [CrossRef]
- Terada, Y.; Higashi, N.; Hidaka, Y.; Isomoto, Y.; Yayama, K. Protein tyrosine phosphatase inhibitor, orthovanadate, induces contraction via Rho kinase activation in mouse thoracic aortas. Biol. Pharm. Bull. 2019, 42, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Goc, A. Biological activity of vanadium compounds. Cent. Eur. J. Biol. 2006, 1, 314–332. [Google Scholar] [CrossRef]
- Domingo, J.L. Vanadium and tungsten derivatives as antidiabetic agents. Biol. Trace Elem. Res. 2002, 88, 97–112. [Google Scholar] [CrossRef]
- Wang, L.; Pan, Y.; Yang, F.; Guo, X.; Peng, J.; Wang, X.; Fang, Y.; Chen, J.; Yi, X.; Cao, H. New sight into interaction between endoplasmic reticulum stress and autophagy induced by vanadium in duck renal tubule epithelial cells. Chem.-Biol. Interact. 2022, 1, 109981. [Google Scholar] [CrossRef] [PubMed]
- Ścibior, A.; Zaporowska, H.; Ostrowski, J. Selected haematological and biochemical parameters of blood in rats after subchronic administration of vanadium and/or magnesium in drinking water. Arch. Environ. Contam. Toxicol. 2006, 51, 287–295. [Google Scholar] [CrossRef]
- Sun, L.; Wang, K.; Li, Y.; Fan, Q.; Zheng, W.; Li, H. Vanadium exposure-induced striatal learning and memory alterations in rats. Neurotoxicology 2017, 62, 124–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paternain, J.; Domingo, J.; Gomez, M.; Ortega, A.; Corbella, J. Developmental toxicity of vanadium in mice after oral administration. J. Appl. Toxicol. 1990, 10, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Melendez-Garcia, N.; Garcia-Ibarra, F.; Bizarro-Nevares, P.; Rojas-Lemus, M.; Lopez-Valdez, N.; González-Villalva, A.; Ayala-Escobar, M.E.; García-Vázquez, F.; Fortoul, T.I. Changes in Ovarian and Uterine Morphology and Estrous Cycle in CD-1 Mice After Vanadium Inhalation. Int. J. Toxicol. 2020, 39, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Cam, M.; Pederson, R.; Brownsey, R.; McNeill, J. Long-term effectiveness of oral vanadyl sulphate in streptozotocin-diabetic rats. Diabetologia 1993, 36, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; McNeill, J. One-year treatment of non-diabetic and streptozotocin-diabetic rats with vanadyl sulphate did not alter blood pressure or haematological indices. Pharmacol. Toxicol. 1994, 74, 110–115. [Google Scholar] [CrossRef]
- Soazo, M.; Garcia, G.B. Vanadium exposure through lactation produces behavioral alterations and CNS myelin deficit in neonatal rats. Neurotoxicology Teratol. 2007, 29, 503–510. [Google Scholar] [CrossRef]
- Li, H.; Zhou, D.; Zhang, Q.; Feng, C.; Zheng, W.; He, K.; Lan, Y. Vanadium exposure-induced neurobehavioral alterations among Chinese workers. Neurotoxicology 2013, 36, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Carvour, M.; Song, C.; Kaul, S.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A. Chronic low dose oxidative stress induces caspase-3 dependent PKCδ proteolytic activation and apoptosis in a cell culture model of dopaminergic neurodegeneration. Ann. N. Y. Acad. Sci. 2008, 1139, 197. [Google Scholar] [CrossRef] [Green Version]
- Fortoul, T.I.; Piñón-Zarate, G.; Diaz-Bech, M.E.; González-Villalva, A.; Mussali-Galante, P.; Rodriguez-Lara, V.; Colin-Barenque, L.; Martinez Pedraza, M.; Montaño, L.F. Spleen and bone marrow megakaryocytes as targets for inhaled vanadium. Histol. Histopathol. 2008, 1, 1vvr. [Google Scholar]
- Chen, L.-C.; Maciejczyk, P.; Thurston, G.D. Metals and air pollution. In Handbook on the Toxicology of Metals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 137–182. [Google Scholar]
- Zenz, C.; Berg, B.A. Human responses to controlled vanadium pentoxide exposure. Arch. Environ. Health Int. J. 1967, 14, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, J.; Farquhar, S.; Thou, T.; Shand, B. Oral vanadyl sulphate does not affect blood cells, viscosity or biochemistry in humans. Pharmacol. Toxicol. 1997, 80, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Boulassel, B.; Sadeg, N.; Roussel, O.; Perrin, M.; Belhadj-Tahar, H. Fatal poisoning by vanadium. Forensic Sci. Int. 2011, 206, e79–e81. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, B.; Sudha, S. Vanadium toxicity. Asian J. Exp. Sci. 2005, 19, 127–134. [Google Scholar]
Models | Vanadium Compounds | Effect | Mode of Action | References |
---|---|---|---|---|
STZ-induced diabetic rats | Dioxidovanadium (V) complex | Cardioprotective in diabetes mellitus | Decrease in blood glucose concentration, MAP, and regulation of the redox system and lipid metabolism | [125] |
Spontaneously hypertensive rats | Vanadyl sulfate | Cardioprotective | Not indicated | [126] |
Ischemia/reperfusion-induced injury in rat heart | Vanadyl sulfate | Cardioprotective and cardiac functional recovery | Activation of PKC and induction of FLICE-inhibitory protein | [127] |
Rat model of myocardial ischemic infarction | Sodium orthovanadate | Post-treatment rescued cardiomyocytes from ischemia/reperfusion injuries | Akt activation and inhibition of fodrin breakdown, thereby inhibiting apoptosis | [128] |
Spontaneously hypertensive rats | bis(maltolato)oxovanadium (IV) (BMOV) | Attenuates hyperinsulinemia and hypertension | [129] | |
Rat model of myocardial infarction | bis(maltolato)oxovanadium (BMOV) | Cardioprotective by limiting reperfusion injury | Opening of cardiac K+ATP channels via increased tyrosine phosphorylation | [130] |
STZ-induced diabetic rats | bis(maltolato)oxovanadiurn(IV) (BMOV) | Cardioprotective by preventing development of myocardial dysfunction | [131] | |
Overload-induced hypertrophy in ovariectomized female rats | bis(1-oxy-2-pyridinethiolato) oxovanadium | Inhibition of cardiac remodeling rescues isoproterenol-induced cardiac arrest | Activation of endothelial nitric oxide synthase | [132] |
Male, 7-week-old mice | Orthovanadate (OVA) | Increase of mouse thoracic aortic contractility | Activation of Src, EGFR, MEK, Erk1/2, and Rho kinase, leading to inactivation of myosin light chain phosphatase via MYPT1 phosphorylation | [133] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharfalddin, A.A.; Al-Younis, I.M.; Mohammed, H.A.; Dhahri, M.; Mouffouk, F.; Abu Ali, H.; Anwar, M.J.; Qureshi, K.A.; Hussien, M.A.; Alghrably, M.; et al. Therapeutic Properties of Vanadium Complexes. Inorganics 2022, 10, 244. https://doi.org/10.3390/inorganics10120244
Sharfalddin AA, Al-Younis IM, Mohammed HA, Dhahri M, Mouffouk F, Abu Ali H, Anwar MJ, Qureshi KA, Hussien MA, Alghrably M, et al. Therapeutic Properties of Vanadium Complexes. Inorganics. 2022; 10(12):244. https://doi.org/10.3390/inorganics10120244
Chicago/Turabian StyleSharfalddin, Abeer A., Inas M. Al-Younis, Hamdoon A. Mohammed, Manel Dhahri, Fouzi Mouffouk, Hijazi Abu Ali, Md. Jamir Anwar, Kamal A. Qureshi, Mostafa A. Hussien, Mawadda Alghrably, and et al. 2022. "Therapeutic Properties of Vanadium Complexes" Inorganics 10, no. 12: 244. https://doi.org/10.3390/inorganics10120244
APA StyleSharfalddin, A. A., Al-Younis, I. M., Mohammed, H. A., Dhahri, M., Mouffouk, F., Abu Ali, H., Anwar, M. J., Qureshi, K. A., Hussien, M. A., Alghrably, M., Jaremko, M., Alasmael, N., Lachowicz, J. I., & Emwas, A. -H. (2022). Therapeutic Properties of Vanadium Complexes. Inorganics, 10(12), 244. https://doi.org/10.3390/inorganics10120244