Synthesis of Y3Al5O12:Ce Powders for X-ray Luminescent Diamond Composites
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nunn, N.; Shames, A.I.; Torelli, M.; Smirnov, A.I.; Shenderova, O. Luminescent Diamond: A Platform for Next Generation Nanoscale Optically Driven Quantum Sensors. In Luminescent Nanomaterials; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2022; pp. 1–95. [Google Scholar]
- Firestein, R.; Marcinkiewicz, C.; Nie, L.; Chua, H.K.; Quesada, I.V.; Torelli, M.; Sternberg, M.; Gligorijevic, B.; Shenderova, O.; Schirhagl, R. Pharmacodynamic Studies of Fluorescent Diamond Carriers of Doxorubicin in Liver Cancer Cells and Colorectal Cancer Organoids. Nanotechnol. Sci. Appl. 2021, 14, 139. [Google Scholar] [CrossRef] [PubMed]
- Romshin, A.M.; Zeeb, V.; Martyanov, A.K.; Kudryavtsev, O.S.; Pasternak, D.G.; Sedov, V.S.; Ralchenko, V.G.; Sinogeykin, A.G.; Vlasov, I.I. A New Approach to Precise Mapping of Local Temperature Fields in Submicrometer Aqueous Volumes. Sci. Rep. 2021, 11, 14228. [Google Scholar] [CrossRef] [PubMed]
- Alkahtani, M.; Cojocaru, I.; Liu, X.; Herzig, T.; Meijer, J.; Küpper, J.; Lühmann, T.; Akimov, A.V.; Hemmer, P.R. Tin-Vacancy in Diamonds for Luminescent Thermometry. Appl. Phys. Lett. 2018, 112, 241902. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Evans, R.E.; Sipahigil, A.; Bhaskar, M.K.; Sukachev, D.D.; Agafonov, V.N.; Davydov, V.A.; Kulikova, L.F.; Jelezko, F.; Lukin, M.D. All-Optical Nanoscale Thermometry with Silicon-Vacancy Centers in Diamond. Appl. Phys. Lett. 2018, 112, 203102. [Google Scholar] [CrossRef] [Green Version]
- Aharonovich, I.; Castelletto, S.; Simpson, D.A.; Su, C.-H.; Greentree, A.D.; Prawer, S. Diamond-Based Single-Photon Emitters. Rep. Prog. Phys. 2011, 74, 076501. [Google Scholar] [CrossRef]
- Lenzini, F.; Gruhler, N.; Walter, N.; Pernice, W.H. Diamond as a Platform for Integrated Quantum Photonics. Adv. Quantum Technol. 2018, 1, 1800061. [Google Scholar] [CrossRef]
- Kurochkin, N.S.; Savinov, S.A.; Bi, D.; Sychev, V.V.; Eliseev, S.P.; Gritsienko, A.V. Characterization of Milled High-Pressure High-Temperature NV-Center Nanodiamonds for Single-Photon Source Applications. J. Russ. Laser Res. 2021, 42, 713–720. [Google Scholar] [CrossRef]
- Sedov, V.; Kuznetsov, S.; Martyanov, A.; Ralchenko, V. Luminescent Diamond Composites. Funct. Diam. 2022, 2, 53–63. [Google Scholar] [CrossRef]
- Osadchy, A.V.; Vlasov, I.I.; Kudryavtsev, O.S.; Sedov, V.S.; Ralchenko, V.G.; Batygov, S.H.; Savin, V.V.; Ershov, P.A.; Chaika, V.A.; Narikovich, A.S.; et al. Luminescent Diamond Window of the Sandwich Type for X-ray Visualization. Appl. Phys. A 2018, 124, 807. [Google Scholar] [CrossRef]
- Sedov, V.; Kouznetsov, S.; Martyanov, A.; Proydakova, V.; Ralchenko, V.; Khomich, A.; Voronov, V.; Batygov, S.; Kamenskikh, I.; Spassky, D.; et al. Diamond–Rare Earth Composites with Embedded NaGdF4:Eu Nanoparticles as Robust Photo- and X-ray-Luminescent Materials for Radiation Monitoring Screens. ACS Appl. Nano Mater. 2020, 3, 1324–1331. [Google Scholar] [CrossRef]
- Sedov, V.; Kuznetsov, S.; Kamenskikh, I.; Martyanov, A.; Vakalov, D.; Savin, S.; Rubtsova, E.; Tarala, V.; Omelkov, S.; Kotlov, A.; et al. Diamond Composite with Embedded YAG:Ce Nanoparticles as a Source of Fast X-ray Luminescence in the Visible and near-IR Range. Carbon 2021, 174, 52–58. [Google Scholar] [CrossRef]
- Vanpoucke, D.E.; Nicley, S.S.; Raymakers, J.; Maes, W.; Haenen, K. Can Europium Atoms Form Luminescent Centres in Diamond: A Combined Theoretical–Experimental Study. Diam. Relat. Mater. 2019, 94, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Palyanov, Y.N.; Borzdov, Y.M.; Khokhryakov, A.F.; Kupriyanov, I.N. High-Pressure Synthesis and Characterization of Diamond from Europium Containing Systems. Carbon 2021, 182, 815–824. [Google Scholar] [CrossRef]
- Cajzl, J.; Akhetova, B.; Nekvindová, P.; Macková, A.; Malinskỳ, P.; Oswald, J.; Remeš, Z.; Varga, M.; Kromka, A. Co-Implantation of Er and Yb Ions into Single-Crystalline and Nano-Crystalline Diamond. Surf. Interface Anal. 2018, 50, 1218–1223. [Google Scholar] [CrossRef]
- Ekimov, E.A.; Zibrov, I.P.; Malykhin, S.A.; Khmelnitskiy, R.A.; Vlasov, I.I. Synthesis of Diamond in Double Carbon-Rare Earth Element Systems. Mater. Lett. 2017, 193, 130–132. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Borzdov, Y.M.; Kupriyanov, I.N. High-Pressure Diamond Synthesis in the Presence of Rare-Earth Metals. J. Cryst. Growth 2020, 531, 125358. [Google Scholar] [CrossRef]
- Magyar, A.; Hu, W.; Shanley, T.; Flatté, M.E.; Hu, E.; Aharonovich, I. Synthesis of Luminescent Europium Defects in Diamond. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sedov, V.S.; Kuznetsov, S.V.; Ralchenko, V.G.; Mayakova, M.N.; Krivobok, V.S.; Savin, S.S.; Zhuravlev, K.P.; Martyanov, A.K.; Romanishkin, I.D.; Khomich, A.A. Diamond-EuF3 Nanocomposites with Bright Orange Photoluminescence. Diam. Relat. Mater. 2017, 72, 47–52. [Google Scholar] [CrossRef]
- Kuznetsov, S.V.; Sedov, V.S.; Martyanov, A.K.; Batygov, S.C.; Vakalov, D.S.; Boldyrev, K.N.; Tiazhelov, I.A.; Popovich, A.F.; Pasternak, D.G.; Bland, H.; et al. Cerium-Doped Gadolinium-Scandium-Aluminum Garnet Powders: Synthesis and Use in X-ray Luminescent Diamond Composites. Ceram. Int. 2022, 48, 12962–12970. [Google Scholar] [CrossRef]
- Kuznetsov, S.V.; Sedov, V.S.; Martyanov, A.K.; Batygov, S.C.; Vakalov, D.S.; Savin, S.S.; Tarala, V.A. X-ray Luminescence of Diamond Composite Films Containing Yttrium-Aluminum Garnet Nanoparticles with Varied Composition of Sc–Ce Doping. Ceram. Int. 2021, 47, 13922–13926. [Google Scholar] [CrossRef]
- Nakamura, H.; Shinozaki, K.; Okumura, T.; Nomura, K.; Akai, T. Massive Red Shift of Ce3+ in Y3Al5O12 Incorporating Super-High Content of Ce. RSC Adv. 2020, 10, 12535–12546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantarano, A.; Testemale, D.; Homeyer, E.; Okuno, H.; Potdevin, A.; Dujardin, C.; Ibanez, A.; Dantelle, G. Drastic Ce3+ Insertion Enhancement in YAG Garnet Nanocrystals through a Solvothermal Route. Front. Mater. 2021, 8, 768087. [Google Scholar] [CrossRef]
- Kwon, S.B.; Choi, S.H.; Yoo, J.H.; Jeong, S.G.; Song, Y.H.; Yoon, D.H. Synthesis Design of Y3Al5O12: Ce3+ Phosphor for Fabrication of Ceramic Converter in Automotive Application. Opt. Mater. 2018, 80, 265–270. [Google Scholar] [CrossRef]
- Matsushita, N.; Tsuchiya, N.; Nakatsuka, K.; Yanagitani, T. Precipitation and Calcination Processes for Yttrium Aluminum Garnet Precursors Synthesized by the Urea Method. J. Am. Ceram. Soc. 1999, 82, 1977–1984. [Google Scholar] [CrossRef]
- Li, X.; Zheng, B.; Odoom-Wubah, T.; Huang, J. Co-Precipitation Synthesis and Two-Step Sintering of YAG Powders for Transparent Ceramics. Ceram. Int. 2013, 39, 7983–7988. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Erhart, P.; Bettinelli, M.; George, N.C.; Parker, S.F.; Karlsson, M. Understanding the Interactions between Vibrational Modes and Excited State Relaxation in Y3−xCexAl5O12: Design Principles for Phosphors Based on 5d–4f Transitions. Chem. Mater. 2018, 30, 1865–1877. [Google Scholar] [CrossRef] [Green Version]
- Sedov, V.S.; Martyanov, A.K.; Khomich, A.A.; Savin, S.S.; Zavedeev, E.V.; Ralchenko, V.G. Deposition of Diamond Films on Si by Microwave Plasma CVD in Varied CH4-H2 Mixtures: Reverse Nanocrystalline-to-Microcrystalline Structure Transition at Very High Methane Concentrations. Diam. Relat. Mater. 2020, 109, 108072. [Google Scholar] [CrossRef]
- Ginés, L.; Mandal, S.; Ashek-I-Ahmed; Cheng, C.-L.; Sow, M.; Williams, A.O. Positive Zeta Potential of Nanodiamonds. Nanoscale 2017, 9, 12549–12555. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S. Nucleation of Diamond Films on Heterogeneous Substrates: A Review. RSC Adv. 2021, 11, 10159–10182. [Google Scholar] [CrossRef]
Sample | a, Å | CSR Size, nm | DTA, °C |
---|---|---|---|
PKS-01—Y2.9900Ce0.0100Al5O12 | 12.013 ± 0.002 | 221 | 968.0 |
PKS-02—Y2.9875Ce0.0125Al5O12 | 12.015 ± 0.002 | 178 | 968.0 |
PKS-03—Y2.9850Ce0.0150Al5O12 | 12.014± 0.002 | 193 | 972.8 |
PKS-04—Y2.9825Ce0.0175Al5O12 | 12.014 ± 0.002 | 193 | 971.8 |
PKS-05—Y2.9800Ce0.0200Al5O12 | 12.014 ± 0.002 | 180 | 974,4 |
PKS-06—Y2.9775Ce0.0225Al5O12 | 12.014 ± 0.002 | 169 | 974.7 |
PKS-07—Y2.9750Ce0.0250Al5O12 | 12.015 ± 0.002 | >250 | 970.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsov, S.V.; Sedov, V.S.; Martyanov, A.K.; Vakalov, D.S.; Tarala, L.V.; Tiazhelov, I.A.; Boldyrev, K.N. Synthesis of Y3Al5O12:Ce Powders for X-ray Luminescent Diamond Composites. Inorganics 2022, 10, 240. https://doi.org/10.3390/inorganics10120240
Kuznetsov SV, Sedov VS, Martyanov AK, Vakalov DS, Tarala LV, Tiazhelov IA, Boldyrev KN. Synthesis of Y3Al5O12:Ce Powders for X-ray Luminescent Diamond Composites. Inorganics. 2022; 10(12):240. https://doi.org/10.3390/inorganics10120240
Chicago/Turabian StyleKuznetsov, Sergey V., Vadim S. Sedov, Artem K. Martyanov, Dmitrii S. Vakalov, Ludmila V. Tarala, Ivan A. Tiazhelov, and Kirill N. Boldyrev. 2022. "Synthesis of Y3Al5O12:Ce Powders for X-ray Luminescent Diamond Composites" Inorganics 10, no. 12: 240. https://doi.org/10.3390/inorganics10120240
APA StyleKuznetsov, S. V., Sedov, V. S., Martyanov, A. K., Vakalov, D. S., Tarala, L. V., Tiazhelov, I. A., & Boldyrev, K. N. (2022). Synthesis of Y3Al5O12:Ce Powders for X-ray Luminescent Diamond Composites. Inorganics, 10(12), 240. https://doi.org/10.3390/inorganics10120240