Microstructural Investigations of VO2 Thermochromic Thin Films Grown by Pulsed Laser Deposition for Smart Windows Applications
Abstract
:1. Introduction
2. Experimental Methods
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Fan, F.; Liu, Y.; Zhao, S.; Xu, Q.; Wang, S.; Luo, D.; Long, Y. Unconventional smart windows: Materials, structures and designs. Nano Energy 2021, 90, 106613. [Google Scholar] [CrossRef]
- Lombard, L.P.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Wang, M.; Xing, X.; Perepichka, I.F.; Shi, Y.; Zhou, D.; Wu, P.; Meng, H. Electrochromic smart windows can achieve an absolute private state through thermochromically engineered electrolyte. Adv. Energy Mater. 2019, 9, 1900433. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Beringer, T.; Holtsmark, B.; Kammen, D.M.; Lambin, E.F.; Lucht, W.; Raven, P.; Ypersele, J.P.V. Europe’s renewable energy directive poised to harm global forests. Nat. Commun. 2018, 9, 3741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, M.; Baltazar, J.C.; Haberl, J.S.; Frazier, E.; Lynn, B. Evaluation of the energy performance of a net zero energy building in a hot and humid climate. Energy Build. 2019, 204, 109531. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Shi, W.; Wang, B.; Cao, Y. Influence of occupant behaviour on the energy performance of variable refrigerant flow systems for office buildings: A case study. J. Build. Eng. 2019, 22, 327–334. [Google Scholar] [CrossRef]
- Granqvist, C.G. Recent progress in thermochromics and electrochromics: A brief survey. Thin Solid Films 2016, 614, 90–96. [Google Scholar] [CrossRef]
- Llordes, A.; Garcia, G.; Gazquez, J.; Milliron, D.J. Tunable near-infrared and visible light transmittance in nanocrystal-in-glass composites. Nature 2013, 500, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Wang, J.; Lee, P.S. Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 2016, 49, 1469–1476. [Google Scholar] [CrossRef]
- Ke, Y.; Zhou, C.; Zhou, Y.; Wang, S.; Chan, S.H.; Long, Y. Emerging thermal responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv. Funct. Mater. 2018, 28, 1800113. [Google Scholar] [CrossRef]
- Khandelwal, H.; Schenning, A.P.H.J.; Debije, M.G. Infrared regulating smart window based on organic materials. Adv. Energy Mater. 2017, 7, 1602209. [Google Scholar] [CrossRef] [Green Version]
- Amasawa, E.; Sasagawa, N.; Kimura, M.; Taya, M. Design of a new energy harvesting electrochromic window based on an organic polymeric dye, a cobalt couple, and PProDOT-Me2. Adv. Energy Mater. 2014, 4, 1400379. [Google Scholar] [CrossRef]
- Mann, D.; Yeung, C.; Habets, R.; Vroon, Z.; Buskens, P. Comparative building energy simulation study of static and thermochromically adaptive energy-efficient glazing in various climate regions. Energies 2020, 13, 2842. [Google Scholar] [CrossRef]
- Gagaoudakis, E.; Michail, G.; Aperathitis, E.; Kortidis, I.; Binas, V.; Panagopoulou, M.; Raptis, Y.S.; Tsoukalas, D.; Kiriakidis, G. Low temperature rf-sputtered thermochromic VO2 films on flexible glass substrates. Adv. Mater. Lett. 2017, 8, 757–761. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochomics and thermochomics: Towards a new paradigm for energy efficient buildings. Mater. Today Proc. 2016, 3, S2–S11. [Google Scholar] [CrossRef]
- Vernardou, D.; Pemble, M.E.; Sheel, D.W. In-situ FTIR studies of the growth of vanadium dioxide coatings on glass by atmospheric pressure chemical vapour deposition for VCl4 and H2O system. Thin Solid Film. 2007, 515, 8768–8770. [Google Scholar] [CrossRef]
- Koo, H.; You, H.W.; Ko, K.E.; Kwon, O.J.; Chang, S.H.; Parka, C. Thermochromic properties of VO2 thin film on SiNx buffered glass substrate. Appl. Surf. Sci. 2013, 277, 237–241. [Google Scholar] [CrossRef]
- Pouget, J.P.; Launois, H.; D’Haenens, J.P.; Merenda, P.; Rice, T.M. Electron Localization Induced by Uniaxial Stress in Pure VO2. Phys. Rev. Lett. 1975, 13, 35. [Google Scholar] [CrossRef]
- Narayan, J.; Bhosle, V.M. Phase transition and critical issues in structure-property correlations of vanadium oxide. J. Appl. Phys. 2006, 100, 103524. [Google Scholar] [CrossRef]
- Bayati, M.R.; Molaei, R.; Wub, F.; Budai, J.D.; Liu, Y.; Narayan, R.J.; Narayan, J. Correlation between structure and semiconductor-to-metal transition characteristics of VO2/TiO2/sapphire thin film heterostructures. Acta Mater. 2013, 61, 7805–7815. [Google Scholar] [CrossRef]
- Burkhardt, W.; Christmann, T.; Franke, S.; Kriegseis, W.; Meister, D.; Meyer, B.K. Tungsten and fluorine co-doping of VO2 films. Thin Solid Films 2002, 402, 226. [Google Scholar] [CrossRef]
- Ruzmetov, D.; Ramanathan, S. Thin Film Metal Oxides: Fundamentals and Applications in Electronics and Energy; Springer: New York, NY, USA, 2010. [Google Scholar]
- Choi, Y.; Jung, Y.; Kim, H. Low-temperature deposition of thermochromic VO2 thin films on glass substrates. Thin Solid Films. 2016, 615, 437–445. [Google Scholar] [CrossRef]
- Kolenatý, D.; Vlček, J.; Bárta, T.; Rezek, J.; Houška, J.; Haviar, S. High-performance thermochromic VO2-based coatings with a low transition temperature deposited on glass by a scalable technique. Sci. Rep. 2020, 10, 11107. [Google Scholar] [CrossRef]
- Malarde, D.; Powell, M.J.; Quesada-Cabrera, R.; Wilson, R.L.; Carmalt, C.J.; Sankar, G.; Parkin, I.P.; Palgrave, R.G. Optimized Atmospheric-Pressure Chemical Vapor Deposition Thermochromic VO2 Thin Films for Intelligent Window Applications. ACS Omega 2017, 2, 1040−1046. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Li, M.; Pan, J.; Luo, Y.; Wu, H.; Zhang, Y.; Li, G. Hydrothermal Synthesis of Mo-Doped VO2/TiO2 Composite Nanocrystals with Enhanced Thermochromic Performance. Appl. Mater. Interfaces 2014, 6, 6555−6561. [Google Scholar] [CrossRef]
- Manning, T.D.; Parkin, I.P. Vanadium(IV) oxide thin films on glass and silicon from the atmospheric pressure chemical vapour deposition reaction of VOCl3 and water. Polyhedron 2004, 23, 3087–3095. [Google Scholar] [CrossRef]
- Chang, T.; Cao, X.; Li, N.; Long, S.; Gao, X.; Dedon, L.R.; Sun, G.; Luo, H.; Jin, P. Facile and Low-Temperature Fabrication of Thermochromic Cr2O3/VO2 Smart Coatings: Enhanced Solar Modulation Ability, High Luminous Transmittance and UV-Shielding Function. Appl. Mater. Interfaces 2017, 9, 26029−26037. [Google Scholar] [CrossRef]
- Kim, D.H.; Kwok, H.S. Pulsed laser deposition of VO2 thin films. Appl. Phys. Lett. 1994, 65, 3188. [Google Scholar] [CrossRef]
- Chang, T.; Zhu, Y.; Huang, J.; Luo, H.; Jin, P.; Cao, X. Flexible VO2 thermochromic films with narrow hysteresis loops. Sol. Energy Mater. Sol. Cells 2021, 219, 110799. [Google Scholar] [CrossRef]
- Kim, C.Y.; Kim, S.H.; Kim, S.J.; An, K.S. VO2 (110) film formation on TiO2(110) through post-reduction of ALD grown vanadium oxide. Appl. Surf. Sci. 2014, 313, 368–371. [Google Scholar] [CrossRef]
- Jian, J.; Chen, A.; Zhang, W.; Wang, H. Sharp semiconductor-to-metal transition of VO2 thin films on glass substrates. J. Appl. Phys. 2013, 114, 244301. [Google Scholar] [CrossRef]
- Jian, J.; Chen, A.; Chen, Y.; Zhang, X.; Wang, H. Roles of strain and domain boundaries on the phase transition stability of VO2 thin films. Appl. Phys. Lett. 2017, 111, 153102. [Google Scholar] [CrossRef]
- Yamagushi, I.; Manabe, T.; Tsyuchia, T.; Nakajima, T.; Sohma, M.; Kumagai, T. Preparation and Characterization of Epitaxial VO2 Films on Sapphire Using Postepitaxial Topotaxy Route via Epitaxial V2O3 Films. Jpn. J. Appl. Phys. 2008, 47, 1022. [Google Scholar] [CrossRef]
- Goodnick, S.M.; Fathipour, M.; Ellsworth, D.L.; Wilmsen, C.W. Effects of a thin SiO2 layer on the formation of metal–silicon contacts. J. Vac. Sci. Technol. 1981, 18, 949. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Snoek, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131. [Google Scholar] [CrossRef]
- Kehagias, T.; Delimitis, A.; Kominou, P.; Iliopoulos, E.; Dimakis, E.; Georgakilas, A.; Nouet, G. Misfit accommodation of compact and columnar InN epilayers grown on Ga-face GaN (0001) by molecular-beam epitaxy. Appl. Phys. Lett. 2005, 86, 151905. [Google Scholar] [CrossRef]
- Premkumar, P.A.; Toeller, M.; Radu, J.P.; Adelmann, C.; Schaekers, M.; Meersschaut, J.; Conard, T.; Elshochta, S.V. Process Study and Characterization of VO2 Thin Films Synthesized by ALD Using TEMAV and O3 Precursors. ECS J. Solid State Sci. Technol. 2012, 1, P169–P174. [Google Scholar] [CrossRef]
- Lee, S.; Ivanov, I.N.; Keum, J.K.; Lee, H.N. Epitaxial stabilization and phase instability of VO2 polymorphs. Sci. Rep. 2016, 6, 19621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brassard, D.; Fourmaux, S.; Jean-Jacques, M.; Kieffer, J.C.; El Khakani, M.A. Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films. Appl. Phys. Lett. 2005, 87, 051910. [Google Scholar] [CrossRef]
- Tolea, F.; Sorescu, M.; Diamandescu, L.; Iacob, N.; Tolea, M.; Kuncser, V. Unidirectional Magnetic Anisotropy in Molybdenum Dioxide–Hematite Mixed-Oxide Nanostructures. Nanomaterials 2022, 12, 938. [Google Scholar] [CrossRef] [PubMed]
- Tolea, F.; Grecu, M.N.; Kuncser, V.; Constantinescu, S.G.; Ghica, D. On the role of Fe ions on magnetic properties of doped TiO2 nanoparticles. Appl. Phys. Lett. 2015, 106, 142404. [Google Scholar] [CrossRef]
- Zhang, R.; Fu, Q.S.; Yin, C.Y.; Li, C.L.; Chen, X.H.; Qian, G.Y.; Lu, C.L.; Yuan, S.L.; Zhao, X.J.; Tao, H.Z. Understanding of metal-insulator transition in VO2 based on experimental and theoretical investigations of magnetic features. Sci. Rep. 2018, 8, 17093. [Google Scholar] [CrossRef] [PubMed]
VO2 Phase | Structure | Lattice Parameters |
---|---|---|
M1 | Monoclinic | a = 0.575 nm b = 0.454 nm c = 0.538 nm β = 122.6° |
A | Tetragonal | a = 0.844 nm c = 0.767 nm |
B | Monoclinic | a = 0.121 nm b = 0.37 nm c = 0.643 nm β = 106.9° |
R | Tetragonal | a = 0.456 nm c = 0.286 nm |
Samples | VO2 M1 | VO2 R | VO2 A | VO2 B |
---|---|---|---|---|
S1 | 54 | 11 | 6 | 29 |
S2 | 40 | - | 15 | 45 |
S3 | 53 | - | 12 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rai, A.; Iacob, N.; Leca, A.; Locovei, C.; Kuncser, V.; Mihailescu, C.N.; Delimitis, A. Microstructural Investigations of VO2 Thermochromic Thin Films Grown by Pulsed Laser Deposition for Smart Windows Applications. Inorganics 2022, 10, 220. https://doi.org/10.3390/inorganics10120220
Rai A, Iacob N, Leca A, Locovei C, Kuncser V, Mihailescu CN, Delimitis A. Microstructural Investigations of VO2 Thermochromic Thin Films Grown by Pulsed Laser Deposition for Smart Windows Applications. Inorganics. 2022; 10(12):220. https://doi.org/10.3390/inorganics10120220
Chicago/Turabian StyleRai, Ayushi, Nicusor Iacob, Aurel Leca, Claudiu Locovei, Victor Kuncser, Cristian N. Mihailescu, and Andreas Delimitis. 2022. "Microstructural Investigations of VO2 Thermochromic Thin Films Grown by Pulsed Laser Deposition for Smart Windows Applications" Inorganics 10, no. 12: 220. https://doi.org/10.3390/inorganics10120220
APA StyleRai, A., Iacob, N., Leca, A., Locovei, C., Kuncser, V., Mihailescu, C. N., & Delimitis, A. (2022). Microstructural Investigations of VO2 Thermochromic Thin Films Grown by Pulsed Laser Deposition for Smart Windows Applications. Inorganics, 10(12), 220. https://doi.org/10.3390/inorganics10120220