New Aspects of the Synthesis of closo-Dodecaborate Nitrilium Derivatives [B12H11NCR]− (R = n-C3H7, i-C3H7, 4-C6H4CH3, 1-C10H7): Experimental and Theoretical Studies
Abstract
:1. Introduction
2. Results
2.1. Synthesis of closo-Dodecaborate Nitrilium Derivatives
2.2. X-ray Analysis
2.3. DFT Calculation
3. Materials and Methods
3.1. IR Spectra
3.2. NMR Spectra
3.3. Electrospray Ionisation Mass Spectrometry (ESI-MS)
3.4. X-ray Diffraction
3.5. Hirshfeld Surface Analysis
3.6. Computational Details
3.7. Synthesis of Nitrilium Derivatives of the closo-Dodecaborate Anion [B12H11NCR]− R=CH3, n-C3H7, i-C3H7, 4-C6H4CH3, 1-C10H7
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Yang, Z.; Chen, H.; Wang, Z.; Zhou, X.; Zhang, H. Progress in Three-Dimensional Aromatic-like Closo-Dodecaborate. Coord. Chem. Rev. 2021, 444, 214042. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I.; Sjöberg, S. Chemistry of Closo-Dodecaborate Anion [B12H12]2−: A Review. Collect. Czechoslov. Chem. Commun. 2002, 67, 679–727. [Google Scholar] [CrossRef]
- Ali, F.; Hosmane, N.S.; Zhu, Y. Boron Chemistry for Medical Applications. Molecules 2020, 25, 828. [Google Scholar] [CrossRef] [Green Version]
- Golub, I.E.; Filippov, O.A.; Kulikova, V.A.; Belkova, N.V.; Epstein, L.M.; Shubina, E.S. Thermodynamic Hydricity of Small Borane Clusters and Polyhedral Closo-Boranes. Molecules 2020, 25, 2920. [Google Scholar] [CrossRef]
- Tran, B.L.; Allen, T.N.; Bowden, M.E.; Autrey, T.; Jensen, C.M. Effects of Glymes on the Distribution of Mg(B10H10) and Mg(B12H12) from the Thermolysis of Mg(Bh4)2. Inorganics 2021, 9, 41. [Google Scholar] [CrossRef]
- Lavallo, V.; Wright, J.H.; Tham, F.S.; Quinlivan, S. Perhalogenated Carba-Closo-Dodecaborate Anions as Ligand Substituents: Applications in Gold Catalysis. Angew. Chem. Int. Ed. 2013, 52, 3172–3176. [Google Scholar] [CrossRef]
- Messina, M.S.; Axtell, J.C.; Wang, Y.; Chong, P.; Wixtrom, A.I.; Kirlikovali, K.O.; Upton, B.M.; Hunter, B.M.; Shafaat, O.S.; Khan, S.I.; et al. Visible-Light-Induced Olefin Activation Using 3D Aromatic Boron-Rich Cluster Photooxidants. J. Am. Chem. Soc. 2016, 138, 6952–6955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Yao, C.; Chen, H.; Fu, Y.; Xiang, C.; He, S.; Zhou, X.; Zhang, H. In Situ Nano Au Triggered by a Metal Boron Organic Polymer: Efficient Electrochemical N 2 Fixation to NH 3 under Ambient Conditions. J. Mater. Chem. A 2019, 7, 20945–20951. [Google Scholar] [CrossRef]
- Avdeeva, V.V.; Malinina, E.A.; Kuznetsov, N.T. Boron Cluster Anions and Their Derivatives in Complexation Reactions. Coord. Chem. Rev. 2022, 469, 214636. [Google Scholar] [CrossRef]
- Bolli, C.; Derendorf, J.; Jenne, C.; Scherer, H.; Sindlinger, C.P.; Wegener, B. Synthesis and Properties of the Weakly Coordinating Anion [Me3NB12Cl11]−. Chem. A Eur. J. 2014, 20, 13783–13792. [Google Scholar] [CrossRef]
- Bolli, C.; Derendorf, J.; Jenne, C.; Keßler, M. Halogenated Closo-Dodecaborate Anions Stabilize Weakly Bound [(Me3NH)3X]2+ (X = Cl, Br) Dications in the Solid State. Eur. J. Inorg. Chem. 2017, 2017, 4552–4558. [Google Scholar] [CrossRef] [Green Version]
- Teprovich, J.A.; Colón-Mercado, H.; Washington II, A.L.; Ward, P.A.; Greenway, S.; Missimer, D.M.; Hartman, H.; Velten, J.; Christian, J.H.; Zidan, R. Bi-Functional Li2B12H12 for Energy Storage and Conversion Applications: Solid-State Electrolyte and Luminescent down-Conversion Dye. J. Mater. Chem. A 2015, 3, 22853–22859. [Google Scholar] [CrossRef]
- Duchêne, L.; Lunghammer, S.; Burankova, T.; Liao, W.-C.; Embs, J.P.; Copéret, C.; Wilkening, H.M.R.; Remhof, A.; Hagemann, H.; Battaglia, C. Ionic Conduction Mechanism in the Na2(B12H12)0.5(B10H10)0.5 Closo -Borate Solid-State Electrolyte: Interplay of Disorder and Ion–Ion Interactions. Chem. Mater. 2019, 31, 3449–3460. [Google Scholar] [CrossRef]
- Gigante, A.; Duchêne, L.; Moury, R.; Pupier, M.; Remhof, A.; Hagemann, H. Direct Solution-Based Synthesis of Na4 (B12H12)(B10H10) Solid Electrolyte. ChemSusChem 2019, 12, 4832–4837. [Google Scholar] [CrossRef]
- Hagemann, H. Boron Hydrogen Compounds: Hydrogen Storage and Battery Applications. Molecules 2021, 26, 7425. [Google Scholar] [CrossRef]
- Barth, R.F.; Zhang, Z.; Liu, T. A Realistic Appraisal of Boron Neutron Capture Therapy as a Cancer Treatment Modality. Cancer Commun. 2018, 38, 36. [Google Scholar] [CrossRef] [Green Version]
- Hattori, Y.; Kusaka, S.; Mukumoto, M.; Uehara, K.; Asano, T.; Suzuki, M.; Masunaga, S.; Ono, K.; Tanimori, S.; Kirihata, M. Biological Evaluation of Dodecaborate-Containing L-Amino Acids for Boron Neutron Capture Therapy. J. Med. Chem. 2012, 55, 6980–6984. [Google Scholar] [CrossRef]
- Vaňková, E.; Lokočová, K.; Maťátková, O.; Křížová, I.; Masák, J.; Grüner, B.; Kaule, P.; Čermák, J.; Šícha, V. Cobalt Bis-Dicarbollide and Its Ammonium Derivatives Are Effective Antimicrobial and Antibiofilm Agents. J. Organomet. Chem. 2019, 899, 120891. [Google Scholar] [CrossRef]
- Iguchi, Y.; Michiue, H.; Kitamatsu, M.; Hayashi, Y.; Takenaka, F.; Nishiki, T.; Matsui, H. Tumor-Specific Delivery of BSH-3R for Boron Neutron Capture Therapy and Positron Emission Tomography Imaging in a Mouse Brain Tumor Model. Biomaterials 2015, 56, 10–17. [Google Scholar] [CrossRef]
- Avdeeva, V.V.; Garaev, T.M.; Breslav, N.V.; Burtseva, E.I.; Grebennikova, T.V.; Zhdanov, A.P.; Zhizhin, K.Y.; Malinina, E.A.; Kuznetsov, N.T. New Type of RNA Virus Replication Inhibitor Based on Decahydro-Closo-Decaborate Anion Containing Amino Acid Ester Pendant Group. JBIC J. Biol. Inorg. Chem. 2022, 27, 421–429. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Zhang, Y.; Liu, J.; van der Veen, S.; Duttwyler, S. The Closo-Dodecaborate Dianion Fused with Oxazoles Provides 3D Diboraheterocycles with Selective Antimicrobial Activity. Chem. A Eur. J. 2018, 24, 10364–10371. [Google Scholar] [CrossRef] [PubMed]
- Kusaka, S.; Hattori, Y.; Uehara, K.; Asano, T.; Tanimori, S.; Kirihata, M. Synthesis of Optically Active Dodecaborate-Containing l-Amino Acids for BNCT. Appl. Radiat. Isot. 2011, 69, 1768–1770. [Google Scholar] [CrossRef] [PubMed]
- Knoth, W.H.; Sauer, J.C.; Miller, H.C.; Muetterties, E.L. Diazonium and Carbonyl Derivatives of Polyhedral Boranes. J. Am. Chem. Soc. 1964, 86, 115–116. [Google Scholar] [CrossRef]
- Dou, D.; Mavunkal, I.J.; Bauer, J.A.K.; Knobler, C.B.; Hawthorne, M.F.; Shore, S.G. Synthesis and Structure of Triethylammonium 2-(Acetonitrile)Nonahydro-Closo-Decaborate(1-). Inorg. Chem. 1994, 33, 6432–6434. [Google Scholar] [CrossRef]
- Mahfouz, N.; Ghaida, F.A.; El Hajj, Z.; Diab, M.; Floquet, S.; Mehdi, A.; Naoufal, D. Recent Achievements on Functionalization within Closo-Decahydrodecaborate [B10H10]2− Clusters. ChemistrySelect 2022, 7, e202200770. [Google Scholar] [CrossRef]
- John, K.C.; Kaczmarczyk, A.; Soloway, A.H. Alkylation and Acylation of B10H9NH3-. J. Med. Chem. 1969, 12, 54–57. [Google Scholar] [CrossRef]
- Grüner, B.; Bonnetot, B.; Mongeot, H. Synthesis of N- and B-Substituted Derivatives of Closo-Amino-Undecahydro-Dodecaborate(1-) Anion. Collect. Czechoslov. Chem. Commun. 1997, 62, 1185–1204. [Google Scholar] [CrossRef]
- Koo, M.-S.; Ozawa, T.; Santos, R.A.; Lamborn, K.R.; Bollen, A.W.; Deen, D.F.; Kahl, S.B. Synthesis and Comparative Toxicology of a Series of Polyhedral Borane Anion-Substituted Tetraphenyl Porphyrins. J. Med. Chem. 2007, 50, 820–827. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bruskin, A.B.; Nesterov, V.V.; Antipin, M.Y.; Bregadze, V.I.; Sjöberg, S. Synthesis of Schiff Bases Derived from the Ammoniaundecahydro-Closo-Dodecaborate(1−) Anion, [B12H11NHCHR]−, and Their Reduction into Monosubstituted Amines [B12H11NH2CH2R]-: A New Route to Water Soluble Agents for BNCT. Inorg. Chem. 1999, 38, 5887–5893. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Wang, T.; Liu, J.; Spingler, B.; Duttwyler, S. Synthesis and Structural Characterization of Amidine, Amide, Urea and Isocyanate Derivatives of the Amino-Closo-Dodecaborate Anion [B12H11NH3]−. Molecules 2018, 23, 3137. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Sivaev, I.B.; Bregadze, V.I. Nitrilium Derivatives of Polyhedral Boron Compounds (Boranes, Carboranes, Metallocarboranes): Synthesis and Reactivity. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 983–988. [Google Scholar] [CrossRef]
- Luzyanin, K.V.; Haukka, M.; Bokach, N.A.; Kuznetsov, M.L.; Kukushkin, V.Y.; Pombeiro, A.J.L. Platinum(IV)-Mediated Hydrolysis of Nitriles Giving Metal-Bound Iminols. J. Chem. Soc. Dalt. Trans. 2002, 9, 1882–1887. [Google Scholar] [CrossRef]
- Kukushkin, V.Y.; Pombeiro, A.J.L. Additions to Metal-Activated Organonitriles. Chem. Rev. 2002, 102, 1771–1802. [Google Scholar] [CrossRef]
- Zhdanov, A.P.; Klyukin, I.N.; Bykov, A.Y.; Grigoriev, M.S.; Zhizhin, K.Y.; Kuznetsov, N.T. Nucleophilic Addition of Alcohols to Anionic [2-B10H9NCR]−(R = Et, t-Bu): An Approach to Producing New Borylated Imidates. Polyhedron 2017, 123, 176–183. [Google Scholar] [CrossRef]
- Bolotin, D.S.; Burianova, V.K.; Novikov, A.S.; Demakova, M.Y.; Pretorius, C.; Mokolokolo, P.P.; Roodt, A.; Bokach, N.A.; Suslonov, V.V.; Zhdanov, A.P.; et al. Nucleophilicity of Oximes Based upon Addition to a Nitrilium Closo-Decaborate Cluster. Organometallics 2016, 35, 3612–3623. [Google Scholar] [CrossRef]
- Miller, H.C.; Hertler, W.R.; Muetterties, E.L.; Knoth, W.H.; Miller, N.E. Chemistry of Boranes. XXV. Synthesis Andc Chemistry of Base Derivatives of B10H102− and B12H122−. Inorg. Chem. 1965, 4, 1216–1221. [Google Scholar] [CrossRef]
- Zhizhin, K.Y.; Zhdanov, A.P.; Kuznetsov, N.T. Derivatives of Closo-Decaborate Anion [B10H10]2− with Exo-Polyhedral Substituents. Russ. J. Inorg. Chem. 2010, 55, 2089–2127. [Google Scholar] [CrossRef]
- Nelyubin, A.V.; Klyukin, I.N.; Zhdanov, A.P.; Grigor’ev, M.S.; Zhizhin, K.Y.; Kuznetsov, N.T. Synthesis of Nitrile Derivatives of the Closo-Decaborate and Closo-Dodecaborate Anions [BnHn–1NCR]– (n = 10, 12) by a Microwave Method. Russ. J. Inorg. Chem. 2021, 66, 139–145. [Google Scholar] [CrossRef]
- Voinova, V.V.; Selivanov, N.A.; Plyushchenko, I.V.; Vokuev, M.F.; Bykov, A.Y.; Klyukin, I.N.; Novikov, A.S.; Zhdanov, A.P.; Grigoriev, M.S.; Rodin, I.A.; et al. Fused 1,2-Diboraoxazoles Based on Closo-Decaborate Anion–Novel Members of Diboroheterocycle Class. Molecules 2021, 26, 248. [Google Scholar] [CrossRef]
- Laskova, J.; Ananiev, I.; Kosenko, I.; Serdyukov, A.; Stogniy, M.; Sivaev, I.; Grin, M.; Semioshkin, A.; Bregadze, V.I. Nucleophilic Addition Reactions to Nitrilium Derivatives [B12H11NCCH3]− and [B12H11NCCH2CH3]−. Synthesis and Structures of Closo-Dodecaborate-Based Iminols, Amides and Amidines. Dalt. Trans. 2022, 51, 3051–3059. [Google Scholar] [CrossRef]
- Šícha, V.; Plešek, J.; Kvíčalová, M.; Císařová, I.; Grüner, B. Boron(8) Substituted Nitrilium and Ammonium Derivatives, Versatile Cobalt Bis(1,2-Dicarbollide) Building Blocks for Synthetic Purposes. Dalt. Trans. 2009, 5, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Bogdanova, E.V.; Stogniy, M.Y.; Suponitsky, K.Y.; Sivaev, I.B.; Bregadze, V.I. Synthesis of Boronated Amidines by Addition of Amines to Nitrilium Derivative of Cobalt Bis(Dicarbollide). Molecules 2021, 26, 6544. [Google Scholar] [CrossRef] [PubMed]
- Bogdanova, E.V.; Stogniy, M.Y.; Chekulaeva, L.A.; Anisimov, A.A.; Suponitsky, K.Y.; Sivaev, I.B.; Grin, M.A.; Mironov, A.F.; Bregadze, V.I. Synthesis and Reactivity of Propionitrilium Derivatives of Cobalt and Iron Bis(Dicarbollides). New J. Chem. 2020, 44, 15836–15848. [Google Scholar] [CrossRef]
- El Anwar, S.; Růžičková, Z.; Bavol, D.; Fojt, L.; Grüner, B. Tetrazole Ring Substitution at Carbon and Boron Sites of the Cobalt Bis(Dicarbollide) Ion Available via Dipolar Cycloadditions. Inorg. Chem. 2020, 59, 17430–17442. [Google Scholar] [CrossRef] [PubMed]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Anisimov, A.A.; Sivaev, I.B.; Bregadze, V.I. Nucleophilic Addition Reactions to the Ethylnitrilium Derivative of Nido -Carborane 10-EtCN-7,8-C2B9H11. New J. Chem. 2018, 42, 17958–17967. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Markov, V.Y.; Sivaev, I.B. Synthesis and Crystal Structures of Nickel(II) and Palladium(II) Complexes with o-Carboranyl Amidine Ligands. Dalt. Trans. 2021, 50, 4967–4975. [Google Scholar] [CrossRef] [PubMed]
- Stogniy, M.Y.; Erokhina, S.A.; Anisimov, A.A.; Suponitsky, K.Y.; Sivaev, I.B.; Bregadze, V.I. 10-NCCH2CH2OCH2CH2C N-7,8-C2B9H11: Synthesis and Reactions with Various Nucleophiles. Polyhedron 2019, 174, 114170. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Bogdanova, E.V.; Anufriev, S.A.; Sivaev, I.B. Synthesis of New Rhodacarborane [3,3-(1′,5′-COD)-8-PrNH=C(Et)NH-3,1,2-RhC2B9H10]. Russ. J. Inorg. Chem. 2022, 67, 1537–1544. [Google Scholar] [CrossRef]
- Calligaro, L.; Michelin, R.A.; Uguagliati, P. Mechanism of Nucleophilic Attack by Secondary Anilines on the Nitrile Group in Platinum(II) Ortho-Cyanobenzyl Complexes. Inorg. Chim. Acta 1983, 76, L83–L87. [Google Scholar] [CrossRef]
- Uguagliati, P.; Belluco, U.; Michelin, R.A.; Guerriero, P. Reactions of Coordinated Nitriles. I. Mechanism of Formation of Amidino Complexes of Attack of Primary Anilines of Pt(II) Ortho-Cyanobenzyl Complexes. Inorg. Chim. Acta 1984, 81, 61–67. [Google Scholar] [CrossRef]
- Ezhov, A.V.; Vyal’ba, F.Y.; Kluykin, I.N.; Zhdanova, K.A.; Bragina, N.A.; Zhdanov, A.P.; Zhizhin, K.Y.; Mironov, A.F.; Kuznetsov, N.T. Synthesis of New Bioinorganic Systems Based on Nitrilium Derivatives of Closo-Decaborate Anion and Meso-Arylporphyrins with Pendant Amino Groups. Macroheterocycles 2017, 10, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Nelyubin, A.V.; Selivanov, N.A.; Bykov, A.Y.; Klyukin, I.N.; Novikov, A.S.; Zhdanov, A.P.; Karpechenko, N.Y.; Grigoriev, M.S.; Zhizhin, K.Y.; Kuznetsov, N.T. Primary Amine Nucleophilic Addition to Nitrilium Closo-Dodecaborate [B12H11NCCH3]−: A Simple and Effective Route to the New BNCT Drug Design. Int. J. Mol. Sci. 2021, 22, 13391. [Google Scholar] [CrossRef] [PubMed]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Electronic Supplementary Information (ESI). Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Neese, F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Karafiloglou, P.; Landis, C.R.; Weinhold, F. NBO 7.0: Natural Bond Orbital Analysis Program; University of Wisconsin: Madison, WI, USA, 2018. [Google Scholar]
- Chemcraft-Graphical Software for Visualization of Quantum Chemistry Computations. Available online: https://www.chemcraftprog.com (accessed on 16 September 2022).
Molecular Species | Phase | C≡N Bond Length, Å | Wiberg Bond Index | Mayer Bond Index | C- Charge | LUMO, eV |
---|---|---|---|---|---|---|
CH3CN | Gas | 1.15 | 2.91 | 3.05 | 0.28 | 2.85 |
CH3CN | 1.15 | 2.88 | 3.04 | 0.36 | 3.22 | |
CH2Cl2 | 1.15 | 2.88 | 3.04 | 0.35 | 3.21 | |
[B12H11NCCH3]− | Gas | 1.14 | 2.66 | 2.78 | 0.50 | 3.67 |
CH3CN | 1.14 | 2.60 | 2.67 | 0.66 | 1.68 | |
CH2Cl2 | 1.14 | 2.61 | 2.69 | 0.64 | 1.84 | |
C3H7CN | Gas | 1.15 | 2.92 | 3.06 | 0.36 | 2.53 |
CH3CN | 1.15 | 2.88 | 3.05 | 0.29 | 2.85 | |
CH2Cl2 | 1.15 | 2.89 | 3.06 | 0.35 | 2.83 | |
[B12H11NCC3H7]− | Gas | 1.14 | 2.66 | 2.76 | 0.51 | 3.55 |
CH3CN | 1.14 | 2.60 | 2.68 | 0.66 | 1.55 | |
CH2Cl2 | 1.14 | 2.61 | 2.69 | 0.64 | 1.72 | |
CH3C6H4CN | Gas | 1.15 | 2.88 | 3.04 | 0.28 | 0.48 |
CH3CN | 1.15 | 2.85 | 3.03 | 0.35 | 0.61 | |
CH2Cl2 | 1.15 | 2.86 | 3.03 | 0.34 | 0.60 | |
[B12H11NCC6H4CH3]− | Gas | 1.14 | 2.62 | 2.71 | 0.49 | 1.51 |
CH3CN | 1.14 | 2.57 | 2.62 | 0.63 | −0.04 | |
CH2Cl2 | 1.14 | 2.58 | 2.64 | 0.62 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelyubin, A.V.; Klyukin, I.N.; Novikov, A.S.; Zhdanov, A.P.; Selivanov, N.A.; Bykov, A.Y.; Kubasov, A.S.; Zhizhin, K.Y.; Kuznetsov, N.T. New Aspects of the Synthesis of closo-Dodecaborate Nitrilium Derivatives [B12H11NCR]− (R = n-C3H7, i-C3H7, 4-C6H4CH3, 1-C10H7): Experimental and Theoretical Studies. Inorganics 2022, 10, 196. https://doi.org/10.3390/inorganics10110196
Nelyubin AV, Klyukin IN, Novikov AS, Zhdanov AP, Selivanov NA, Bykov AY, Kubasov AS, Zhizhin KY, Kuznetsov NT. New Aspects of the Synthesis of closo-Dodecaborate Nitrilium Derivatives [B12H11NCR]− (R = n-C3H7, i-C3H7, 4-C6H4CH3, 1-C10H7): Experimental and Theoretical Studies. Inorganics. 2022; 10(11):196. https://doi.org/10.3390/inorganics10110196
Chicago/Turabian StyleNelyubin, Alexey V., Ilya N. Klyukin, Alexander S. Novikov, Andrey P. Zhdanov, Nikita A. Selivanov, Alexander Yu. Bykov, Alexey S. Kubasov, Konstantin Yu. Zhizhin, and Nikolay T. Kuznetsov. 2022. "New Aspects of the Synthesis of closo-Dodecaborate Nitrilium Derivatives [B12H11NCR]− (R = n-C3H7, i-C3H7, 4-C6H4CH3, 1-C10H7): Experimental and Theoretical Studies" Inorganics 10, no. 11: 196. https://doi.org/10.3390/inorganics10110196
APA StyleNelyubin, A. V., Klyukin, I. N., Novikov, A. S., Zhdanov, A. P., Selivanov, N. A., Bykov, A. Y., Kubasov, A. S., Zhizhin, K. Y., & Kuznetsov, N. T. (2022). New Aspects of the Synthesis of closo-Dodecaborate Nitrilium Derivatives [B12H11NCR]− (R = n-C3H7, i-C3H7, 4-C6H4CH3, 1-C10H7): Experimental and Theoretical Studies. Inorganics, 10(11), 196. https://doi.org/10.3390/inorganics10110196