Influence of Gain Saturation Effect on Transverse Mode Instability Considering Four-Wave Mixing
Abstract
:1. Introduction
2. Theoretical Model
3. Results and Discussions
3.1. Nonlinear Gain of Higher-Order Modes
3.2. The Threshold of TMI Affected by Gain Saturation
3.3. Numerical Simulation Results of Other Fiber Laser System Parameters
3.3.1. Forward Pumping with Different Seed Power
3.3.2. Backward and Bidirectional Pumping with Different Seed Power
3.3.3. Core Numerical Aperture
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eidam, T.; Hanf, S.; Seise, E.; Andersen, T.V.; Gabler, T.; Wirth, C.; Schreiber, T.; Limpert, J.; Tünnermann, A. Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 2010, 35, 94–96. [Google Scholar] [CrossRef]
- Jauregui, C.; Stihler, C.; Limpert, J. Transverse mode instability. Adv. Opt. Photonics 2020, 12, 429–484. [Google Scholar] [CrossRef]
- Stihler, C.; Jauregui, C.; Kholaif, S.E.; Limpert, J. Intensity noise as a driver for transverse mode instability in fiber amplifiers. PhotoniX 2020, 1, 8. [Google Scholar] [CrossRef]
- Ballato, J.; Otto, H.-J.; Jauregui, C.; Limpert, J.; Tünnermann, A. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality. In Proceedings of the Fiber Lasers XIII: Technology, Systems, and Applications, San Francisco, CA, USA, 9 March 2016. [Google Scholar]
- Ren, S.; Lai, W.; Wang, G.; Li, W.; Song, J.; Chen, Y.; Ma, P.; Liu, W.; Zhou, P. Experimental study on the impact of signal bandwidth on the transverse mode instability threshold of fiber amplifiers. Opt. Express 2022, 30, 7845–7853. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Z.; Xiang, X.; Liang, X.; Lin, H.; Xu, S.; Yang, Z.; Wang, J.; Jing, F. Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser. Photonics Res. 2017, 5, 77–81. [Google Scholar] [CrossRef]
- Lupi, J.F.; Johansen, M.M.; Michieletto, M.; Laegsgaard, J. Static and dynamic mode coupling in a double-pass rod-type fiber amplifier. Opt. Lett 2018, 43, 5535–5538. [Google Scholar] [CrossRef]
- Cao, R.; Chen, G.; Chen, Y.; Zhang, Z.; Lin, X.; Dai, B.; Yang, L.; Li, J. Effective suppression of the photodarkening effect in high-power Yb-doped fiber amplifiers by H2 loading. Photonics Res. 2020, 8, 288–295. [Google Scholar] [CrossRef]
- Ye, Y.; Lin, X.; Xi, X.; Shi, C.; Yang, B.; Zhang, H.; Wang, X.; Li, J.; Xu, X. Novel constant-cladding tapered-core ytterbium-doped fiber for high-power fiber laser oscillator. High Power Laser Sci. Eng. 2021, 9, e21. [Google Scholar] [CrossRef]
- Pulford, B.; Holten, R.; Matniyaz, T.; Kalichevsky-Dong, M.T.; Hawkins, T.W.; Dong, L. kW-level monolithic single-mode narrow-linewidth all-solid photonic bandgap fiber amplifier. Opt. Lett. 2021, 46, 4458–4461. [Google Scholar] [CrossRef]
- Jauregui, C.; Eidam, T.; Otto, H.-J.; Stutzki, F.; Jansen, F.; Limpert, J.; Tuennermann, A. Physical origin of mode instabilities in high-power fiber laser systems. Opt. Express 2012, 20, 12912–12925. [Google Scholar] [CrossRef]
- Dong, L. Stimulated thermal Rayleigh scattering in optical fibers. Opt. Express 2013, 21, 2642–2656. [Google Scholar] [CrossRef]
- Smith, A.V.; Smith, J.J. Overview of a Steady-Periodic Model of Modal Instability in Fiber Amplifiers. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 472–483. [Google Scholar] [CrossRef]
- Kong, F.; Xue, J.; Stolen, R.H.; Dong, L. Direct experimental observation of stimulated thermal Rayleigh scattering with polarization modes in a fiber amplifier. Optica 2016, 3, 975–978. [Google Scholar] [CrossRef]
- Smith, A.V.; Smith, J.J. Mode instability in high power fiber amplifiers. Opt. Express 2011, 19, 10180–10192. [Google Scholar] [CrossRef]
- Ward, B.; Robin, C.; Dajani, I. Origin of thermal modal instabilities in large mode area fiber amplifiers. Opt. Express 2012, 20, 11407. [Google Scholar] [CrossRef]
- Tao, R.; Zhou, P.; Ma, P.; Wang, X.; Liu, Z. Study of Wavelength Dependence of Mode Instability Based on a Semi-Analytical Model. IEEE J. Quantum Electron. A Publ. IEEE Quantum Electron. Appl. Soc. 2015, 51, 1–6. [Google Scholar]
- Hansen, K.R.; Alkeskjold, T.T.; Broeng, J.; Lægsgaard, J. Theoretical analysis of mode instability in high-power fiber amplifiers. Opt. Express 2013, 21, 1944–1971. [Google Scholar] [CrossRef]
- Zervas, M.N. Transverse mode instability analysis in fiber amplifiers. In Proceedings of the Fiber Lasers XIV: Technology and Systems, San Francisco, CA, USA, 17 March 2017. [Google Scholar]
- Zervas, M.N. Modal instability in two-mode optical fiber amplifiers. In Proceedings of the Fiber Lasers XVIII: Technology and Systems, Online Only, 7 March 2021. [Google Scholar]
- Zervas, M.N. Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers. Opt. Express 2019, 27, 19019–19041. [Google Scholar] [CrossRef]
- Dong, L. Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers. J. Lightwave Technol. 2022, 40, 4795–4803. [Google Scholar] [CrossRef]
- Tao, R.; Wang, X.; Zhou, P. Comprehensive Theoretical Study of Mode Instability in High-Power Fiber Lasers by Employing a Universal Model and Its Implications. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–19. [Google Scholar] [CrossRef]
- Smith, A.V.; Smith, J.J. Increasing mode instability thresholds of fiber amplifiers by gain saturation. Opt. Express 2013, 21, 15168–15182. [Google Scholar] [CrossRef]
- Tao, R.; Ma, P.; Wang, X.; Zhou, P.; Liu, Z. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers. Laser Phys. Lett. 2017, 14, 025002. [Google Scholar] [CrossRef]
- Hansen, K.R.; Laegsgaard, J. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers. Opt. Express 2014, 22, 11267–11278. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Wang, X.; Zhou, P.; Liu, Z. Seed power dependence of mode instabilities in high-power fiber amplifiers. J. Opt. 2017, 19, 065202. [Google Scholar] [CrossRef]
- Tao, R.; Ma, P.; Wang, X.; Zhou, P.; Liu, Z. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength. J. Opt. 2015, 17, 045504. [Google Scholar] [CrossRef]
- Naderi, S.; Dajani, I.; Madden, T.; Robin, C. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations. Opt. Express 2013, 21, 16111–16129. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.V.; Smith, J.J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers. Opt. Express 2012, 20, 24545–24558. [Google Scholar] [CrossRef] [PubMed]
- Hendow, S.T.; Hu, I.N.; Zhu, C.; Zhang, C.; Thomas, A.; Galvanauskas, A. Analytical time-dependent theory of thermally induced modal instabilities in high power fiber amplifiers. In Proceedings of the Fiber Lasers X: Technology, Systems, and Applications, San Francisco, CA, USA, 22 March 2013. [Google Scholar]
- Agrawal, G.P. Nonlinear Fiber Optics, 5th ed.; Academic Press: Boston, MA, USA, 2013; pp. 45–47. [Google Scholar]
- Zervas, M.N. Transverse-modal-instability gain in high power fiber amplifiers: Effect of the perturbation relative phase. APL Photonics 2019, 4, 022802. [Google Scholar] [CrossRef]
- Huang, L.; Yao, T.; Leng, J.; Guo, S.; Tao, R.; Zhou, P.; Cheng, X. Mode instability dynamics in high-power low-numerical-aperture step-index fiber amplifier. Appl. Opt. 2017, 56, 5412–5417. [Google Scholar] [CrossRef]
- Otto, H.-J.; Stutzki, F.; Jansen, F.; Eidam, T.; Jauregui, C.; Limpert, J.; Tünnermann, A. Temporal dynamics of mode instabilities in highpower fiber lasers and amplifiers(Article). Opt. Express 2012, 20, 15710–15722. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.V.; Smith, J.J. Maximizing the mode instability threshold of a fiber amplifier. arXiv 2013, arXiv:Physics/1301.3489. [Google Scholar] [CrossRef]
- Ward, B.G. Maximizing power output from continuous-wave single-frequency fiber amplifiers. Opt. Lett. 2015, 40, 542–545. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.W. Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide. IEEE Trans. Microw. Theory Tech. 1969, 17, 1130–1138. [Google Scholar] [CrossRef]
- Smith, A.V.; Smith, J.J. Raising the mode instability thresholds of fiber amplifiers. In Proceedings of the Fiber Lasers XI: Technology, Systems, and Applications, San Francisco, CA, USA, 7 March 2014. [Google Scholar]
- Li, R.; Wu, H.; Xiao, H.; Leng, J.; Zhou, P. More than 5 kW counter tandem pumped fiber amplifier with near single-mode beam quality. Opt. Laser Technol. 2022, 153, 108204. [Google Scholar] [CrossRef]
- Wu, H.; Li, R.; Xiao, H.; Huang, L.; Yang, H.; Leng, J.; Pan, Z.; Zhou, P. First demonstration of a bidirectional tandem-pumped high-brightness 8 kW level confined-doped fiber amplifier. J. Lightwave Technol. 2022, 40, 5673–5681. [Google Scholar] [CrossRef]
- Leidner, J.P.; Marciante, J.R. Three fiber designs for mitigating thermal mode instability in high-power fiber amplifiers. Opt. Express 2020, 28, 28502–28517. [Google Scholar] [CrossRef]
- Li, H.; Huang, L.; Wu, H.; Chen, Y.; Pan, Z.; Zhou, P. Threshold of transverse mode instability considering four-wave mixing. Opt. Express 2022. [Google Scholar] [CrossRef]
- Roohforouz, A.; Eyni Chenar, R.; Rezaei-Nasirabad, R.; Azizi, S.; Hejaz, K.; Hamedani Golshan, A.; Abedinajafi, A.; Vatani, V.; Nabavi, S.H. The effect of population inversion saturation on the transverse mode instability threshold in high power fiber laser oscillators. Sci. Rep. 2021, 11, 21116. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Ma, P.; Wang, X.; Zhou, P.; Liu, Z. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers. Laser Phys. Lett. 2015, 12, 085101. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
40 μm | 125 μm | ||
976 nm | 1064 nm | ||
m2 | |||
m2 | m2 | ||
1.451 | 1.45 | ||
L | 500 mm | ||
901 μs | m−3 | ||
1.38 W/K | J/(m3·K) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Huang, L.; Wu, H.; Pan, Z.; Zhou, P. Influence of Gain Saturation Effect on Transverse Mode Instability Considering Four-Wave Mixing. Photonics 2022, 9, 577. https://doi.org/10.3390/photonics9080577
Li H, Huang L, Wu H, Pan Z, Zhou P. Influence of Gain Saturation Effect on Transverse Mode Instability Considering Four-Wave Mixing. Photonics. 2022; 9(8):577. https://doi.org/10.3390/photonics9080577
Chicago/Turabian StyleLi, Haobo, Liangjin Huang, Hanshuo Wu, Zhiyong Pan, and Pu Zhou. 2022. "Influence of Gain Saturation Effect on Transverse Mode Instability Considering Four-Wave Mixing" Photonics 9, no. 8: 577. https://doi.org/10.3390/photonics9080577
APA StyleLi, H., Huang, L., Wu, H., Pan, Z., & Zhou, P. (2022). Influence of Gain Saturation Effect on Transverse Mode Instability Considering Four-Wave Mixing. Photonics, 9(8), 577. https://doi.org/10.3390/photonics9080577