Photo-Writable Sulfide Glasses Used to Fabricate Core-Clad Fiber Doped with Pr3+ for Mid-IR Luminescence
Abstract
:Introduction
2. Materials and Methods
2.1. Syntheses
2.2. Thermal Characterizations
2.3. Structural Characterizations
2.4. Step-Index Fiber Elabaration
2.5. Optical Characterizations
2.5.1. Femtosecond Laser ∆n Modification in the Glass Bulks
2.5.2. Fluorescence Measurements
3. Results and Discussion
3.1. Thermal Properties
3.2. Refractive Index Modification by Femtosecond Laser
3.3. Glass Structure
3.4. MIR Emission of Core-Clad Sulfide Fiber
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nazabal, V.; Adam, J.-L. Infrared Luminescence of Chalcogenide Glasses Doped with Rare Earth Ions and Their Potential Applications. Opt. Mater. X 2022, 15, 100168. [Google Scholar] [CrossRef]
- Cui, J.; Xiao, X.; Xu, Y.; Cui, X.; Chen, M.; Guo, J.; Lu, M.; Peng, B.; Guo, H. Mid-Infrared Emissions of Dy3+ Doped Ga-As-S Chalcogenide Glasses and Fibers and Their Potential for a 4.2 Μm Fiber Laser. Opt. Mater. Express 2018, 8, 2089–2102. [Google Scholar] [CrossRef]
- Falconi, M.C.; Palma, G.; Starecki, F.; Nazabal, V.; Troles, J.; Adam, J.L.; Taccheo, S.; Ferrari, M.; Prudenzano, F. Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission. J. Light. Technol. 2017, 35, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Denker, B.I.; Galagan, B.I.; Koltashev, V.V.; Plotnichenko, V.G.; Snopatin, G.E.; Sukhanov, M.V.; Sverchkov, S.E.; Velmuzhov, A.P. Continuous Tb-Doped Fiber Laser Emitting at ∼5.25 Μm. Opt. Laser Technol. 2022, 154, 108355. [Google Scholar] [CrossRef]
- Anashkina, E.A.; Kim, A.V. Numerical Simulation of Ultrashort Mid-IR Pulse Amplification in Praseodymium-Doped Chalcogenide Fibers. J. Light. Technol. 2017, 35, 5397–5403. [Google Scholar] [CrossRef]
- Sójka, L.; Tang, Z.; Furniss, D.; Sakr, H.; Bereś-Pawlik, E.; Seddon, A.B.; Benson, T.M.; Sujecki, S. Numerical and Experimental Investigation of Mid-Infrared Laser Action in Resonantly Pumped Pr3+ Doped Chalcogenide Fibre. Opt. Quantum Electron. 2017, 49, 21. [Google Scholar] [CrossRef] [Green Version]
- Churbanov, M.F.; Denker, B.I.; Galagan, B.I.; Koltashev, V.V.; Plotnichenko, V.G.; Snopatin, G.E.; Sukhanov, M.V.; Sverchkov, S.E.; Velmuzhov, A.P. Laser Potential of Pr3+ Doped Chalcogenide Glass in 5-6 Μm Spectral Range. J. Non Cryst. Solids 2021, 559, 120592. [Google Scholar] [CrossRef]
- Maes, F.; Fortin, V.; Poulain, S.; Poulain, M.; Carrée, J.-Y.; Bernier, M.; Vallée, R. Room-Temperature Fiber Laser at 3.92 Μm. Optica 2018, 5, 761–764. [Google Scholar] [CrossRef]
- Sujecki, S. Modelling and Design of Lanthanide Ion Doped Chalcogenide Fiber Lasers: Progress towards the Practical Realization of the First MIR Chalcogenide Fiber Laser. Fibers 2018, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Karaksina, E.V.; Kotereva, T.V.; Shiryaev, V.S. Luminescence Properties of Core-Clad Pr-Doped Ge-As-Se-Ga(In,I) Glass Fibers. J. Lumin. 2018, 204, 154–156. [Google Scholar] [CrossRef]
- Bowman, S.R.; Shaw, L.B.; Feldman, B.J.; Ganem, J. A 7-Μm Praseodymium-Based Solid-State Laser. IEEE J. Quantum Electron. 1996, 32, 646–649. [Google Scholar] [CrossRef]
- Chahal, R.; Starecki, F.; Doualan, J.-L.; Němec, P.; Trapananti, A.; Prestipino, C.; Tricot, G.; Boussard-Pledel, C.; Michel, K.; Braud, A.; et al. Nd3+: Ga-Ge-Sb-S Glasses and Fibers for Luminescence in Mid-IR: Synthesis, Structural Characterization and Rare Earth Spectroscopy. Opt. Mater. Express 2018, 8, 1650. [Google Scholar] [CrossRef]
- Nunes, J.J.; Sojka, Ł.; Crane, R.W.; Furniss, D.; Tang, Z.Q.; Tang, Z.Q.; Mabwa, D.; Xiao, B.; Benson, T.M.; Farries, M.; et al. Room Temperature Mid-Infrared Fiber Lasing beyond 5 Μm in Chalcogenide Glass Small-Core Step Index Fiber. Opt. Lett. 2021, 46, 3504–3507. [Google Scholar] [CrossRef] [PubMed]
- Caulier, O.; Le Coq, D.; Calvez, L.; Bychkov, E.; Masselin, P. Free Carrier Accumulation during Direct Laser Writing in Chalcogenide Glass by Light Filamentation. Phys. A Mater. Sci. Process 2011, 77, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Aitken, B.G.; Quimby, R.S. Rare-Earth-Doped Multicomponent Ge-Based Sulphide Glasses. J. Non Cryst. Solids 1997, 213–214, 281–287. [Google Scholar] [CrossRef]
- Carcreff, J.; Masselin, P.; Boussard-Plédel, C.; Kulinski, P.; Troles, J.; Le Coq, D. Step-Index Fibre from Metal Halide Chalcogenide Glasses. Opt. Mater. Express 2020, 10, 2800. [Google Scholar] [CrossRef]
- Ledemi, Y.; Bureau, B.; Calvez, L.; Le Floch, M.; Rozé, M.; Lin, C.; Zhang, X.H.; Allix, M.; Matzen, G.; Messaddeq, Y. Structural Investigations of Glass Ceramics in the Ga2S3-GeS2-CsCl System. J. Phys. Chem. B 2009, 113, 14574–14580. [Google Scholar] [CrossRef]
- Masselin, P.; Bychkov, E.; Le Coq, D. Direct Laser Writing of a Low-Loss Waveguide with Independent Control over the Transverse Dimension and the Refractive Index Contrast between the Core and the Cladding. Opt. Lett. 2016, 41, 3507. [Google Scholar] [CrossRef]
- Masselin, P.; Bychkov, E.; Le Coq, D. Ultrafast Laser Inscription of High-Performance Mid-Infrared Waveguides in Chalcogenide Glass. IEEE Photonics Technol. Lett. 2018, 30, 2123–2126. [Google Scholar] [CrossRef] [Green Version]
- Barty, A.; Roberts, A.; Paganin, D.; Nugent, K.A. Quantitative Optical Phase Microscopy. Opt. Lett. 1998, 23, 817–819. [Google Scholar] [CrossRef]
- Ampem-Lassen, E.; Huntington, S.T.; Dragomir, N.M.; Nugent, K.A.; Roberts, A. Refractive Index Profiling of Axially Symmetric Optical Fibers: A New Technique. Opt. Express 2005, 13, 3277. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Rouxel, T.; Troles, J.; Bureau, B.; Boussard-Plédel, C.; Houizot, P.; Sangleboeuf, J.C. Viscosity of As2Se3 Glass During the Fiber Drawing Process. J. Am. Ceram. Soc. 2011, 94, 2408–2411. [Google Scholar] [CrossRef]
- Lucovsky, G.; Deneufville, J.P.; Galeener, F.L. Study of the Optic Modes of Ge0.30S0.70 Glass by Infrared and Raman Spectroscopy. Phys. Rev. B 1974, 9, 1591–1597. [Google Scholar] [CrossRef]
- Julien, C.; Barnier, S.; Massot, M.; Chbani, N.; Cai, X.; Loireau-Lozac’h, A.M.; Guittard, M. Raman and Infrared Spectroscopic Studies of Ge-Ga-Ag Sulphide Glasses. Mater. Sci. Eng. B 1994, 22, 191–200. [Google Scholar] [CrossRef]
- Pethes, I.; Chahal, R.; Nazabal, V.; Prestipino, C.; Trapananti, A.; Pantalei, C.; Beuneu, B.; Bureau, B.; Jóvári, P. Short Range Order in Ge-Ga-Se Glasses. J. Alloys Compd. 2015, 651, 578–584. [Google Scholar] [CrossRef]
- Pethes, I.; Nazabal, V.; Chahal, R.; Bureau, B.; Kaban, I.; Belin, S.; Jóvári, P. Local Motifs in GeS2–Ga2S3 Glasses. J. Alloys Compd. 2016, 673, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, T.; Takebe, H.; Morinaga, K. Glass Forming Region and Structure of Vitreous RS-Ga2S3(R=Ca, Sr, Ba). J. Ceram. Soc. Jpn. 2003, 111, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Heo, J.; Yoon, J.M.; Ryou, S.Y. Raman Spectroscopic Analysis on the Solubility Mechanism of La3+ in GeS2–Ga2S3 Glasses. J. Non Cryst. Solids 1998, 238, 115–123. [Google Scholar] [CrossRef]
- Cuisset, A.; Hindle, F.; Laureyns, J.; Bychkov, E. Structural Analysis of XCsCl(1−x)Ga2S3 Glasses by Means of DFT Calculations and Raman Spectroscopy. J. Raman Spectrosc. 2010, 41, 1050–1058. [Google Scholar] [CrossRef]
- Masselin, P.; Le Coq, D.; Cuisset, A.; Bychkov, E. Spatially Resolved Raman Analysis of Laser Induced Refractive Index Variation in Chalcogenide Glass. Opt. Mater. Express 2012, 2, 1768. [Google Scholar] [CrossRef]
- Barbosa, L.C.; Cesar, C.L.; Mazali, I.O.; Alves, O.L. Spectroscopic and Thermal Properties of Ga2S3–Na2S–CsCl Glasses. J. Am. Ceram. Soc. 2006, 89, 1037–1041. [Google Scholar] [CrossRef]
Glass Composition | Tg (K) ± 2 K | Tx (K) ± 2 K | ∆T (K) ± 4 K | α (10−6 K−1) ± 0.5 × 10−6 K−1 | T at 106 Pa·s ± 2 K |
---|---|---|---|---|---|
Undoped core | 653 | >773 | >120 | 10.1 | 728 |
Pr3+-doped core | 654 | >773 | >119 | 10.5 | 730 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carcreff, J.; Nazabal, V.; Troles, J.; Boussard-Plédel, C.; Masselin, P.; Starecki, F.; Braud, A.; Camy, P.; Le Coq, D. Photo-Writable Sulfide Glasses Used to Fabricate Core-Clad Fiber Doped with Pr3+ for Mid-IR Luminescence. Photonics 2022, 9, 549. https://doi.org/10.3390/photonics9080549
Carcreff J, Nazabal V, Troles J, Boussard-Plédel C, Masselin P, Starecki F, Braud A, Camy P, Le Coq D. Photo-Writable Sulfide Glasses Used to Fabricate Core-Clad Fiber Doped with Pr3+ for Mid-IR Luminescence. Photonics. 2022; 9(8):549. https://doi.org/10.3390/photonics9080549
Chicago/Turabian StyleCarcreff, Julie, Virginie Nazabal, Johann Troles, Catherine Boussard-Plédel, Pascal Masselin, Florent Starecki, Alain Braud, Patrice Camy, and David Le Coq. 2022. "Photo-Writable Sulfide Glasses Used to Fabricate Core-Clad Fiber Doped with Pr3+ for Mid-IR Luminescence" Photonics 9, no. 8: 549. https://doi.org/10.3390/photonics9080549
APA StyleCarcreff, J., Nazabal, V., Troles, J., Boussard-Plédel, C., Masselin, P., Starecki, F., Braud, A., Camy, P., & Le Coq, D. (2022). Photo-Writable Sulfide Glasses Used to Fabricate Core-Clad Fiber Doped with Pr3+ for Mid-IR Luminescence. Photonics, 9(8), 549. https://doi.org/10.3390/photonics9080549