Elimination of Scintillation Noise Caused by External Environment Disturbances in Open Space
Abstract
:1. Introduction
2. Measurement Principle
3. Method for Eliminating Scintillation Noise Caused by External Environment Disturbances
4. Experimental Setup for Atmospheric Detection in Open Optical Path
5. Results
6. Conclusions
- Signals submerged in noise are detected via fast coarse-tuning filtering.
- Scintillation noise caused by external environment disturbances are eliminated through the extraction and reconstruction of the main feature information.
- Background signal is obtained via unequal precision, background noise is eliminated, and adaptive iterative fitting is performed. COD and RSS fitted via the traditional method are 0.87859 and 1.5772 × 10−5, respectively, and those fitted via the proposed method are 0.91448 and 8.81639 × 10−6, respectively.
- A field experiment is carried out, and diurnal variations in CH4 emissions are observed. The daily average for the intervals 0–24, 24–48, and 48–72 h are 2.716, 2.5521, and 2.432 ppm, respectively. For a period of time after rain, the rain may affect the emission of CH4. Thus, the accuracy of detection of trace gases in open space is improved using the proposed method.
- It is proven that there is a good engineering practical value in the proposed method, such as detecting environmental gas in the hazard zone, monitoring agricultural and animal husbandry gas emissions, and detecting leakage of the natural gas pipeline.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Fu, P.; Chao, X. Laser absorption sensing systems: Challenges, modeling, and design optimization. Appl. Sci. 2019, 9, 2723. [Google Scholar] [CrossRef] [Green Version]
- Deng, B.; Sima, C.; Xiao, Y.; Wang, X.; Ai, Y.; Li, T.; Lu, P.; Liu, D. Modified laser scanning technique in wavelength modulation spectroscopy for advanced TDLAS gas sensing. Opt. Lasers Eng. 2022, 151, 106906. [Google Scholar] [CrossRef]
- Ruxton, K.; Chakraborty, A.L.; Johnstone, W.; Lengden, M.; Stewart, G.; Duffin, K. Tunable diode laser spectroscopy with wavelength modulation: Elimination of residual amplitude modulation in a phasor decomposition approach. Sens. Actuators B Chem. 2010, 150, 367–375. [Google Scholar] [CrossRef]
- Xia, J.; Feng, C.; Zhu, F.; Ye, S.; Zhang, S.; Kolomenskii, A.; Wang, Q.; Dong, J.; Wang, Z.; Jin, W. A sensitive methane sensor of a ppt detection level using a mid-infrared interband cascade laser and a long-path multipass cell. Sens. Actuators B Chem. 2021, 334, 129641. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, D.; Lu, S.; Zhang, H.P.; Guan, Y. Fast-response concentration measurement of bromotrifluoromethane using a quantum cascade laser (QCL) at 8.280 μm. Opt. Express 2019, 27, 8838–8847. [Google Scholar] [CrossRef] [PubMed]
- Behera, A.; Wang, A. Calibration-free wavelength modulation spectroscopy: Symmetry approach and residual amplitude modulation normalization. Appl. Opt. 2016, 55, 4446–4455. [Google Scholar] [CrossRef]
- Craig, I.M.; Taubman, M.S.; Bernacki, B.E.; Stahl, R.D.; Schiffern, J.T.; Myers, T.L.; Cannon, B.D.; Phillips, M.C. Tunable diode laser absorption spectrometer for detection of hydrogen fluoride gas at ambient pressure. In Proceedings of the (CLEO)—Science and Innovations, San Jose, CA, USA, 8–13 June 2014. [Google Scholar]
- Kuehnreich, B.; Wagner, S.; Habig, J.C.; Saathoff, H.; Moyer, E.J.; Ebert, V. Open-path TDLAS for in-situ detection of water isotopes in ice clouds down to 190 K. In Proceedings of the Laser Applications to Chemical, Security and Environmental Analysis 2014, Seattle, WA, USA, 13–17 July 2014. [Google Scholar]
- Rao, R.Z. Light Propagation in the Turbulent Atmosphere; Anhui Science and Technology Press: Hefei City, China, 2005. [Google Scholar]
- Wyngaard, J.C. Turbulence in the Atmosphere; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Kulikov, V.A.; Vorontsov, M.A. Analysis of the joint impact of atmospheric turbulence and refractivity on laser beam propagation. Opt. Express 2017, 25, 28524–28535. [Google Scholar] [CrossRef]
- Witzel, O.; Klein, A.; Meffert, C.; Wagner, S.; Kaiser, S.; Schulz, C.; Ebert, V. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Express 2013, 21, 19951–19965. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, J.; Jin, Y. Efficient subtle motion detection from high-speed video for sound recovery and vibration analysis using singular value decomposition-based approach. Opt. Eng. 2017, 56, 094105. [Google Scholar] [CrossRef]
- Gao, Z.L.; Ye, W.L.; Zheng, C.T.; Wang, Y.-D. Wavelet-denoising technique in near-infrared methane detection based on tunable diode laser absorption spectroscopy. Optoelectron. Lett. 2014, 10, 299–303. [Google Scholar] [CrossRef]
- Chui, H.; Yang, K.; Zhang, L.; Wu, X.; Liu, Y.; Wang, A.; Li, H.; Ji, M. Tunable diode laser absorption spectroscopy (TDLAS) detection signal denoising based on gabor transform. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2016, 36, 2997–3002. [Google Scholar] [PubMed]
- Ye, W.; Xu, X.; Peng, C.; Xiao, X.; Xia, Z.; Liu, W.; Luo, W.; Wu, F.; Wu, T. A LabVIEW-based TDLAS methane detection system using a wavelet denoising method. Microw. Opt. Technol. Lett. 2021, 1–6. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, S.; Ma, Y. Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 µm diode laser and adaptive Savitzky-Golay filtering. Opt. Express 2022, 30, 1304–1313. [Google Scholar] [CrossRef]
- Zhao, G.; Tan, W.; Hou, J.; Qiu, X.; Ma, W.; Li, Z.; Dong, L.; Zhang, L.; Yin, W.; Xiao, L.; et al. Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser. Opt. Express 2016, 24, 1723–1733. [Google Scholar] [CrossRef]
- Chen, X.; Fan, R.; Wu, J.; Song, X.; Liu, Q.; Wang, Y.; Wang, Y.; Tao, B. Fourier-transform-based two-stage camera calibration method with simple periodical pattern. Opt. Lasers Eng. 2020, 133, 106121. [Google Scholar] [CrossRef]
- Wang, R.; Yang, Z.N.; Wang, H.Y.; Xu, X.J. Methane-based in situ temperature rise measurement in a diode-pumped rubidium laser. Opt. Lett. 2017, 42, 667–670. [Google Scholar] [CrossRef]
- Brandt, A.R.; Heath, G.A.; Kort, E.A.; O’sullivan, F.; Pétron, G.; Jordaan, S.M.; Tans, P.; Wilcox, J.; Gopstein, A.M.; Arent, D.; et al. Methane leaks from North American natural gas systems. Science 2014, 343, 733–735. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhang, Y.J.; Liu, J.G.; Liu, W.Q.; Kan, R.F.; Wang, T.D.; Chen, D.; Chen, J.Y.; Wang, X.M.; Xia, H.; et al. Applications of a tunable diode laser absorption spectrometer in monitoring greenhouse gases. Chin. Opt. Lett. 2006, 4, 363–365. [Google Scholar]
- Xu, L.; Hou, G.; Qiu, S.; Huang, A.; Zhang, H.; Cao, Z. Noise immune TDLAS temperature measurement through spectrum shifting by using a Mach–Zehnder interferometer. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, J.; Xu, Z.; He, Y.; Kan, R. Characterization of temperature non-uniformity over a premixed CH4–air flame based on line-of-sight TDLAS. Appl. Phys. B 2016, 122, 1–9. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Q.; Huang, Q.; Zhang, H.; Yan, J.; Cen, K. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology. Opt. Commun. 2015, 346, 53–63. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.-X.; Gao, H.; Zhang, Y.-J.; Chen, D. Elimination of Scintillation Noise Caused by External Environment Disturbances in Open Space. Photonics 2022, 9, 415. https://doi.org/10.3390/photonics9060415
Tang Q-X, Gao H, Zhang Y-J, Chen D. Elimination of Scintillation Noise Caused by External Environment Disturbances in Open Space. Photonics. 2022; 9(6):415. https://doi.org/10.3390/photonics9060415
Chicago/Turabian StyleTang, Qi-Xing, Hua Gao, Yu-Jun Zhang, and Dong Chen. 2022. "Elimination of Scintillation Noise Caused by External Environment Disturbances in Open Space" Photonics 9, no. 6: 415. https://doi.org/10.3390/photonics9060415
APA StyleTang, Q. -X., Gao, H., Zhang, Y. -J., & Chen, D. (2022). Elimination of Scintillation Noise Caused by External Environment Disturbances in Open Space. Photonics, 9(6), 415. https://doi.org/10.3390/photonics9060415