Fiber-Optic Based Laser Wakefield Accelerated Electron Beams and Potential Applications in Radiotherapy Cancer Treatments
Abstract
:1. Introduction
2. Rationale
3. Significance
3.1. Applications to Brachytherapy
3.2. Current HDR and Potential LWFA-HDR Treatment
3.3. Potential for FLASH Brachytherapy
4. Cost Benefits and Market Size
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tajima, T.; Dawson, J.M. Laser electron accelerator. Phys. Rev. Lett. 1979, 43, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Comm. 1985, 56, 219–221. [Google Scholar] [CrossRef]
- Nakajima, K.; Nakanishi, H.; Kawakubo, T.; Ogata, A.; Kitagawa, Y.; Shiraga, H.; Zhang, T.; Suzuki, K.; Kato, Y.; Sakawa, Y.; et al. Laser wakefield accelerator experiments using 1ps 30 TW Nd:glass laser. In Proceedings of the International Conference on Particle Accelerators, Washington, DC, USA, 17–20 May 1993; IEEE: Piscataway, NJ, USA, 1993; pp. 2556–2558. [Google Scholar]
- Modena, A.; Najmudin, Z.; Dangor, A.E.; Clayton, C.E.; Marsh, K.A.; Joshi, C.; Malka, V.; Darrow, C.B.; Danson, C.; Neely, D.; et al. Electron acceleration from the breaking of relativistic plasma waves. Nature 1995, 377, 606–608. [Google Scholar] [CrossRef]
- Mangles, S.P.D.; Murphy, C.D.; Najmudin, Z.; Thomas, A.G.R.; Collier, J.L.; Dangor, A.E.; Divall, E.J.; Foster, P.S.; Gallacher, J.G.; Hooker, C.J.; et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 2004, 431, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Geddes, C.G.R.; Toth, C.S.; van Tilborg, J.; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 2004, 431, 538–541. [Google Scholar] [CrossRef] [PubMed]
- Faure, J.; Glinec, Y.; Pukhov, A.; Kiselev, S.; Gordienko, S.; Lefebvre, E.; Rousseau, J.P.; Burgy, F.; Malka, V. A laser-plasma accelerator producing monoenergetic electron beams. Nature 2004, 431, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Leemans, W.P.; Nagler, B.; Gonsalves, A.J.; Toth, C.S.; Nakamura, K.; Geddes, C.G.R.; Esarey, E.; Schroeder, C.B.; Hooker, S.M. GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2006, 2, 696–699. [Google Scholar] [CrossRef]
- Hafz, N.A.M.; Jeong, T.M.; Choi, I.W.; Lee, S.K.; Pae, K.H.; Kulagin, V.V.; Sung, J.H.; Yu, T.J.; Hong, K.-H.; Hosokai, T.; et al. Stable generation of GeV-class electron beams from self-guided laser-plasmas channels. Nat. Photonics 2008, 2, 571–577. [Google Scholar] [CrossRef]
- Gonsalves, A.J.; Nakamura, K.; Daniels, J.; Benedetti, C.; Pieronek, C.; de Raadt, T.C.H.; Steinke, S.; Bin, J.H.; Bulanov, S.S.; van Tilborg, J.; et al. Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide. Phys. Rev. Lett. 2019, 122, 084801. [Google Scholar] [CrossRef] [Green Version]
- Giulietti, A.; Bourgeois, N.; Ceccotti, T.; Davoine, X.; Dobosz, S.; Oliveira, P.D.; Galimberti, M.; Galy, J.; Gamucci, A.; Giulietti, D.; et al. Intense g-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses. Phys. Rev. Lett. 2008, 101, 105002. [Google Scholar] [CrossRef]
- Nakajima, K.; Yuan, J.; Chen, L.; Sheng, Z. Laser-driven very high energy electron/photon beam radiation therapy in conjunction with a robotic system. Appl. Sci. 2015, 5, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, K. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences. Proc. Jpn. Acad. Ser. B 2015, 91, 223–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giulietti, A. Laser-Driven Particle Acceleration towards Radiobiology and Medicine; Biological and Medical Physics, Biomedical Engineering; Springer: Berlin, Germany, 2016; ISSN 2197-5647. [Google Scholar]
- Fourkal, E.; Shahine, B.; Ding, M.; Li, J.S.; Tajima, T.; Ma, C.M. Particle in cell simulation of laser-accelerated proton beams for radiation therapy. Med. Phys 2002, 29, 2788–2798. [Google Scholar] [CrossRef] [PubMed]
- Fourkal, E.; Li, J.S.; Ding, M.; Tajima, T.; Ma, C.M. Particle selection for laser-accelerated proton therapy feasibility study. Med. Phys. 2003, 30, 1660–1670. [Google Scholar] [CrossRef]
- Macchi, A. A review of laser-plasma ion acceleration. arXiv 2017, arXiv:1712.06443v1. [Google Scholar]
- Nicks, B.S.; Hakimi, S.; Barraza-Vadez, E.; Chesnut, K.D.; DeGrandchamp, G.H.; Gage, K.R.; Housley, D.B.; Huxtable, G.; Lawler, G.; Lin, D.J.; et al. Electron dynamics in the high-density laser-wakefield acceleration regime. Photonics 2021, 8, 216. [Google Scholar] [CrossRef]
- Barraza-Valdez, E.; Tajima, T.; Strickland, D.; Roa, D. Laser beat wave acceleration near critical density. Photonics 2022. submitted. [Google Scholar]
- National Cancer Institute—Radiation Therapy to Treat Cancer. Available online: https://www.cancer.gov/aboutcancer/treatment/types/radiation-therapy/brachytherapy (accessed on 25 March 2022).
- Khan, F.M. The Physics of Radiation Therapy, 4th ed.; Lippincott Williams & Wilkins: New York, NY, USA, 2010. [Google Scholar]
- Shah, W.; Chanteloup, J.C.; Mourou, G. Ultrafast fiber technologies for compact laser wake-field in medical applications. Photonics 2022. submitted. [Google Scholar]
- Renner, W.D.; O’Connor, T.P.; Bermudez, N.M. An algorithm for generation of implant plans for high-dose-rate irradiators. Med. Phys. 1990, 17, 35–40. [Google Scholar] [CrossRef]
- Arnold, C.A.; Pezhouh, M.K.; Lam-Himlin, D.; Pittman, M.E.; VandenBussche, C.; Voltaggio, L. 90Y-TheraSpheres: The new look of Yttrium-90. Am. J. Surg. Pathol. 2019, 43, 688–694. [Google Scholar] [CrossRef]
- Salem, R.; Lewandowski, R.J.; Mulcahy, M.F.; Riaz, A.; Ryu, R.K.; Ibrahim, S.; Atassi, B.; Baker, T.; Gates, V.; Miller, F.H.; et al. Radioembolization for Hepatocellular Carcinoma Using Yttrium-90 Microspheres: A Comprehensive Report of Long-term Outcomes. Gastroenterology 2010, 138, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Salem, R.; Johnson, G.E.; Kim, E.; Riaz, A.; Bishay, V.; Boucher, E.; Fowers, K.; Lewandowski, R.; Padia, S.A. Yttrium-90 Radioembolization for the treatment of solitary, unresectable HCC: The legacy study. Hepatology 2021, 74, 2342–2352. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.S.; Coldwell, D.; Nutting, C.; Murthy, R.; Wertman, D.E., Jr.; Loehr, S.P.; Overton, C.; Meranze, S.; Niedzwiecki, J.; Sailer, S. 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: Modern USA experience. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 412. [Google Scholar] [CrossRef] [PubMed]
- Van der Laars, R.; Prius, T.P.E. Introduction to HDR brachytherapy optimization. In Brachytherapy from Radium to Optimization; Nucletron Corporation: Veenendaal, The Netherlands, 1994. [Google Scholar]
- Ezzel, G.A.; Luthermann, R.W. Clinical implementation of dwell time optimization techniques for single stepping-source remote applicators. In Brachytherapy Physics; Medical Physics Publishing: Madison, WI, USA, 1994. [Google Scholar]
- Kubo, H.D.; Glasgow, G.P.; Pethel, T.D.; Thomadsen, B.R.; Williamson, J.F. High dose-rate brachytherapy treatment delivery: Report of the AAPM Radiation Therapy Committee Task Group No. 59. Med Phys. 1998, 25, 375–403. [Google Scholar] [CrossRef]
- Ramachandran, P. New era of electronic brachytherapy. World J. Radiol. 2017, 9, 148–154. [Google Scholar] [CrossRef]
- Valentin, J. Preface, Main Points, Introduction, Chapters 2 and 3. Ann. ICRP 2005, 35, 1–9. [Google Scholar] [CrossRef]
- IAEA. 3D Brachytherapy Treatment Planning. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/093/49093364.pdf (accessed on 25 March 2022).
- IAEA. The Transition from 2-D Brachytherapy to 3-D High Dose Rate Brachytherapy; Human Health Report No. 12.; IAEA: Vienna, Austria, 2015. [Google Scholar]
- Chua, B.; Jackson, J.E.; Lin, C.; Veness, M.J. Radiotherapy for early non-melanoma skin cancer. Oral Oncol. 2019, 98, 96–101. [Google Scholar] [CrossRef]
- Garbutcheon-Singh, K.B.; Veness, M.J. The role of radiotherapy in the management of non-melanoma skin cancer. Australas. J. Dermatol. 2019, 60, 265–272. [Google Scholar] [CrossRef]
- Ota, K.; Adar, T.; Dover, L.; Khachemoune, A. Review: The reemergence of brachytherapy as treatment for non-melanoma skin cancer. J. Dermatol. Treat. 2018, 29, 170–175. [Google Scholar] [CrossRef]
- Veness, M.; Delishaj, D.; Barnes, E.; Bezugly, A.; Rembielak, A. Current Role of Radiotherapy in Non-melanoma Skin Cancer. Clin. Oncol. 2019, 31, 749–758. [Google Scholar] [CrossRef]
- Li, J.; Thiele, S.; Quirk, B.C.; Kirk, R.W.; Verjans, J.W.; Akers, E.; Bursill, C.A.; Nicholls, S.J.; Herkommer, A.M.; Giessen, H.; et al. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. Light Sci. Appl. 2020, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Saitoh, H.; Doan, T.L.H.; Shiro, A.; Nakai, K.; Komatsu, A.; Tsujimoto, M.; Yasuda, R.; Kawachi, T.; Tajima, T.; et al. Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: Implications for the Auger therapy. Sci. Rep. 2019, 9, 13275. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y.; Matsumoto, K.; Saitoh, H.; Shiro, A.; Ma, Y.; Laird, M.; Chinnathambi, S.; Birault, A.; Doan, T.L.H.; Yasuda, R.; et al. Iodine containing porous organosilica nanoparticles trigger destruction of tumor spheroids upon irradiation with monochromatic X-ray: DNA double strand breaks and preferential effect of K-edge energy X-ray. Sci. Rep. 2021, 11, 14192. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.D.; Hammond, E.M.; Higgins, G.S.; Petersson, K. Ultra-High dose rate (FLASH) radiotherapy: Silver bullet or fool’s gold? Front. Oncol. 2020, 9, 1563. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.R.; Rahman, M.; Zhang, R.; Williams, B.B.; Gladstone, D.J.; Pogue, B.W.; Bruza, P. Dosimetry for FLASH Radiotherapy: A Review of Tools and the Role of Radioluminescence and Cherenkov Emission. Front. Phys. 2020, 8, 328. [Google Scholar] [CrossRef]
- Labate, L.; Andreassi, M.G.; Baffigi, F.; Bizzarri, R.; Borghini, A.; Bussolino, G.C.; Fulgentini, L.; Ghetti, F.; Giulietti, A.; Koster, P. LESM: A laser driven sub-MeV electron source delivering ultra-high dose rate on thin biological samples. J. Appl. Phys. D Appl. Phys. 2016, 49, 275401. [Google Scholar] [CrossRef]
- Sha, W.; CommScope Access Technologies Advanced Research, Santa Clara, CA, USA. Private communication, 2022.
- Varian Medical Systems Sales Representative; Varian Medical Systems, Palo Alto, CA, USA. Private communication, 2022.
- Scanderbeg, D.J.; Yashar, C.; Ouhib, Z.; Jhingran, A.; Einck, J. Development, implementation and associated challenges of a new HDR brachytherapy program. Brachytherapy 2020, 19, 874–880. [Google Scholar] [CrossRef]
- Mailhot Vega, R.B.; Barbee, D.; Talcott, W.; Duckworth, T.; Shah, B.A.; Ishaq, O.F.; Small, C.; Yeung, A.R.; Perez, C.A.; Schiff, P.B.; et al. Cost in perspective: Direct assessment of American market acceptability of Co-60 in gynecologic high-dose-rate brachytherapy and contrast with experience abroad. J. Contemp. Brachyther. 2018, 10, 503–509. [Google Scholar] [CrossRef]
- Atun, R.; Jaffray, D.A.; Barton, M.B.; Bray, F.; Baumann, M.; Vikram, B.; Hanna, T.P.; Knaul, F.M.; Lievens, Y.; Lui, T.Y.; et al. Expanding global access to radiotherapy. Lancet 2015, 16, 1153–1186. [Google Scholar] [CrossRef]
- Ballas, L.K.; Elkin, E.B.; Schrag, D.; Minsky, B.D.; Bach, P.B. Radiation therapy facilities in the United States. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- IROC; University of Texas—MD Anderson Cancer Center, Houston, TX, USA. Private communication, 2022.
Item | LWFA–HDR | 192Ir–HDR | 60Co–HDR |
---|---|---|---|
Purchase Estimate (one-time expense) | $100K–$300K | $200K–$350K | ~$300K |
Room Shielding (one-time expense) | None | $200K–$500K * | $300K–$500K ** |
Source Replacement | None | ~$10K every 4–6 months | ~130K every 60 months |
Downtime due to Source Replacement | None | 1–2 days | 1–2 days |
5-year Estimated Total | $300K | $910K | $930K |
HI | UMI | LMI | LI | Total |
---|---|---|---|---|
8911 (68%) | 3115 (24%) | 1014 (8%) | 32 (0%) | 13,072 (100%) |
Rad. Onc. Clinics in the US in 2004 | Radiotherapy Linacs |
---|---|
2246 | 5166 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roa, D.; Kuo, J.; Moyses, H.; Taborek, P.; Tajima, T.; Mourou, G.; Tamanoi, F. Fiber-Optic Based Laser Wakefield Accelerated Electron Beams and Potential Applications in Radiotherapy Cancer Treatments. Photonics 2022, 9, 403. https://doi.org/10.3390/photonics9060403
Roa D, Kuo J, Moyses H, Taborek P, Tajima T, Mourou G, Tamanoi F. Fiber-Optic Based Laser Wakefield Accelerated Electron Beams and Potential Applications in Radiotherapy Cancer Treatments. Photonics. 2022; 9(6):403. https://doi.org/10.3390/photonics9060403
Chicago/Turabian StyleRoa, Dante, Jeffrey Kuo, Harry Moyses, Peter Taborek, Toshiki Tajima, Gerard Mourou, and Fuyuhiko Tamanoi. 2022. "Fiber-Optic Based Laser Wakefield Accelerated Electron Beams and Potential Applications in Radiotherapy Cancer Treatments" Photonics 9, no. 6: 403. https://doi.org/10.3390/photonics9060403
APA StyleRoa, D., Kuo, J., Moyses, H., Taborek, P., Tajima, T., Mourou, G., & Tamanoi, F. (2022). Fiber-Optic Based Laser Wakefield Accelerated Electron Beams and Potential Applications in Radiotherapy Cancer Treatments. Photonics, 9(6), 403. https://doi.org/10.3390/photonics9060403