All Optical Stabilizations of Nano-Structure-Based QDash Semiconductor Mode-Locked Lasers Based on Asymmetric Dual-Loop Optical Feedback Configurations
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussions
3.1. Effect of Power-Split-Ratio Controlled Asymmetric Dual-Loop Feedback Scheme on RF Linewidth and Integrated Timing Jitter
3.2. Effect of Power-Split-Ratio Controlled Asymmetric Dual-Loop Feedback Scheme on Suppression of Frequency Fluctuations
3.3. Effect of the Length of Second Cavity on Suppression of Frequency Resonances
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bajek, D.; Cataluna, M.A. Fast optical sampling by electronic repetition-rate tuning using a single mode-locked laser diode. Opt. Express 2021, 29, 6890–6902. [Google Scholar] [CrossRef] [PubMed]
- Merghem, K.; Calò, C.; Rosales, R.; Lafosse, X.; Aubin, G.; Martinez, A.; Lelarge, F.; Ramdane, A. Stability of optical frequency comb generated with InAs/InP quantum-dash-based passive mode-locked lasers. IEEE J. Quantum Electron. 2014, 50, 275–280. [Google Scholar] [CrossRef]
- Panapakkam, V.; Anthur, A.; Vujicic, V.; Zhou, R.; Gaimard, Q.; Merghem, K.; Aubin, G.; Lelarge, F.; Viktorov, E.A.; Barry, L.; et al. Amplitude and phase noise of frequency combs generated by single-section InAs/InP quantum-dash-based passively and actively mode-locked lasers. IEEE J. Quantum Electron. 2016, 52, 1300207. [Google Scholar] [CrossRef]
- Merghem, K.; Panapakkam, V.; Gaimard, Q.; Lelarge, F.; Ramdane, A. Narrow linewidth frequency comb source based on self-injected quantum-dash passively mode-locked laser. In CLEO: Science and Innovations (SW1C-5); Optical Society of America: San Jose, CA, USA, 2017. [Google Scholar]
- Vujicic, V.; Calo, C.; Watts, R.; Lelarge, F.; Browning, C.; Merghem, K.; Martinez, A.; Ramdane, A.; Barry, L. Quantum dash mode-locked lasers for data centre applications. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 53–60. [Google Scholar] [CrossRef]
- Mathason, B.K.; Delfyett, J. Pulsed injection locking dynamics of passively mode-locked external-cavity semiconductor laser systems for all-optical clock recovery. J. Lightwave Technol. 2000, 18, 1111. [Google Scholar] [CrossRef]
- Wang, T.; Lou, C.; Huo, L.; Wang, Z.; Gao, Y. All optical clock division and multiplication by injection mode-locked laser based on SOA. Opt. Laser Technol. 2003, 35, 463–469. [Google Scholar] [CrossRef]
- Schmeckebier, H.; Fiol, G.; Meuer, C.; Arsenijević, D.; Bimberg, D. Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s. Opt. Express 2010, 18, 3415–3425. [Google Scholar] [CrossRef]
- Rafailov, E.U.; Cataluna, M.A.; Sibbett, W. Mode-locked quantum-dot lasers. Nat. Photon 2007, 1, 395–401. [Google Scholar] [CrossRef]
- Jiang, L.A.; Ippen, E.; Yokoyama, H. Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission. J. Opt. Fiber Commun. Rep. 2005, 2, 1–31. [Google Scholar] [CrossRef]
- Lu, Z.G.; Liu, J.R.; Poole, J.; Jiao, Z.J.; Barrios, J.; Poitras, D.; Caballero, J.; Zhang, X. Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers. Opt. Commun. 2011, 284, 2323–2326. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, X.; Qyyum, A.; Feng, T.; Guo, P.; Jiang, J.; Zheng, H. PbS nanoparticles for ultrashort pulse generation in optical communication region. Part. Part. Syst. Charact. 2018, 35, 1800341. [Google Scholar] [CrossRef]
- Feng, J.; Li, X.; Shi, Z.; Zheng, C.; Li, X.; Leng, D.; Wang, Y.; Liu, J.; Zhu, L. 2D ductile transition metal chalcogenides (TMCs): Novel high-performance Ag2S nanosheets for ultrafast photonics. Adv. Opt. Mater. 2020, 8, 1901762. [Google Scholar] [CrossRef]
- Liu, J.S.; Li, X.H.; Guo, Y.X.; Qyyum, A.; Shi, Z.J.; Feng, T.C.; Zhang, Y.; Jiang, C.X.; Liu, X.F. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small 2019, 15, 1902811. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Li, X.; Zhu, G.; Wang, Q.J. Emerging high-performance SnS/CdS nanoflower heterojunction for ultrafast photonics. ACS Appl. Mater. Interfaces 2020, 12, 43098–43105. [Google Scholar] [CrossRef]
- Bradley, D.J.; Holbrook, M.H. Mode-Locked semiconductor lasers and their spectroscopic applications. Phil. Trans. R. Soc. Lond. A. 1982, 307, 521–530. [Google Scholar]
- Kumar, P.; Grillot, F. Control of dynamical instability in semiconductor quantum nanostructures diode lasers: Role of phase-amplitude coupling. Eur. Phys. J. Spec. Top. 2013, 222, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Sooudi, E.; de Dios, C.; McInerney, J.G.; Huyet, G.; Lelarge, F.; Merghem, K.; Rosales, R.; Martinez, A.; Ramdane, A.; Hegarty, S. A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1101208. [Google Scholar] [CrossRef]
- Haji, M.; Hou, L.; Kelly, A.E.; Akbar, J.; Marsh, J.H.; Arnold, J.M.; Ironside, C.N. High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes. Opt. Express 2012, 20, 3268–3274. [Google Scholar] [CrossRef]
- Arsenijević, D.; Kleinert, M.; Bimberg, D. Phase noise and jitter reduction by optical feedback on passively mode-locked quantum-dot lasers. Appl. Phys. Lett. 2013, 103, 231101. [Google Scholar] [CrossRef]
- Asghar, H.; Wei, W.; Kumar Sooudi, E.; McInerney, J.G. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback. Opt. Express 2018, 26, 4581–4592. [Google Scholar] [CrossRef] [Green Version]
- Asghar, H.; Sooudi, E.; Kumar Wei, W.; McInerney, J.G. Optimum stabilization of self-mode-locked quantum dash lasers using dual optical feedback with improved tolerance against phase delay mismatch. Opt. Express 2017, 25, 15796–15805. [Google Scholar] [CrossRef] [PubMed]
- Asghar, H.; McInerney, J.G. Asymmetric dual-loop feedback to suppress spurious tones and reduce timing jitter in self-mode-locked quantum-dash lasers emitting at 1.55 μm. Opt. Lett. 2017, 42, 3714–3717. [Google Scholar] [CrossRef] [PubMed]
- Asghar, H.; Sooudi, E.; McInerney, J.G. Stabilization of self-mode-locked QDash lasers subject to simultaneous continuous-wave optical injection and optical feedback. Appl. Opt. 2018, 57, E45–E49. [Google Scholar] [CrossRef] [PubMed]
- Asghar, H.; Sooudi, E.; Baig, M.A.; McInerney, J.G. Recent advances in stabilization of mode-locked quantum dash lasers at 1.55 µm by dual-loop optical feedback. Opt. Laser Technol. 2020, 122, 105884. [Google Scholar] [CrossRef]
- Asghar, H.; McInerney, J.G. Effects of Power Split Ratio and Optical Delay Phase Tuning on Stabilization of Self-Mode-Locked Quantum-Dash Lasers Subject to Dual-Loop Optical Feedback. IEEE Photonics J. 2020, 12, 1502211. [Google Scholar] [CrossRef]
- Asghar, H.; McInerney, J.G. Control of Timing Stability, and Suppression in Delayed Feedback Induced Frequency-Fluctuations by Means of Power Split Ratio and Delay Phase-Dependent Dual-Loop Optical Feedback. Appl. Sci. 2021, 11, 4529. [Google Scholar] [CrossRef]
- Kéfélian, F.; O’Donoghue, S.; Todaro, M.T.; McInerney, J.G.; Huyet, G. RF- linewidth in monolithic passively-mode-locked semiconductor laser. IEEE Photonics Technol. Lett. 2008, 20, 1405–1407. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, H.; Sung, H.K. Performance optimization of an optically combined dual-loop optoelectronic oscillator based on optical interference analysis. Opt. Eng. 2017, 56, 066111. [Google Scholar] [CrossRef]
Loop I | Loop II | Feedback Ration into Gain Section |
---|---|---|
−27.27 dB | −19.74 dB | −22 dB |
−22 dB | −22 dB | −22 dB |
−19.74 dB | −27.27 dB | −22 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrebdi, T.A.; Asghar, M.; Asghar, H. All Optical Stabilizations of Nano-Structure-Based QDash Semiconductor Mode-Locked Lasers Based on Asymmetric Dual-Loop Optical Feedback Configurations. Photonics 2022, 9, 376. https://doi.org/10.3390/photonics9060376
Alrebdi TA, Asghar M, Asghar H. All Optical Stabilizations of Nano-Structure-Based QDash Semiconductor Mode-Locked Lasers Based on Asymmetric Dual-Loop Optical Feedback Configurations. Photonics. 2022; 9(6):376. https://doi.org/10.3390/photonics9060376
Chicago/Turabian StyleAlrebdi, Tahani A., Mamoon Asghar, and Haroon Asghar. 2022. "All Optical Stabilizations of Nano-Structure-Based QDash Semiconductor Mode-Locked Lasers Based on Asymmetric Dual-Loop Optical Feedback Configurations" Photonics 9, no. 6: 376. https://doi.org/10.3390/photonics9060376
APA StyleAlrebdi, T. A., Asghar, M., & Asghar, H. (2022). All Optical Stabilizations of Nano-Structure-Based QDash Semiconductor Mode-Locked Lasers Based on Asymmetric Dual-Loop Optical Feedback Configurations. Photonics, 9(6), 376. https://doi.org/10.3390/photonics9060376