Special Issue on “Visible Light Communication (VLC)”
Acknowledgments
Conflicts of Interest
References
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible Light Communication in 6G: Advances, Challenges, and Prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Demirkol, I.; Camps-Mur, D.; Paradells, J.; Combalia, M.; Popoola, W.; Haas, H. Powering the Internet of Things Through Light Communication. IEEE Commun. Mag. 2019, 57, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Fu, S.; Jian, X.; Liu, M.; Deng, X.; Ding, Z.G. NOMA for Energy-Efficient LiFi-Enabled Bidirectional IoT Communication. IEEE Trans. Commun. 2021, 69, 1693–1706. [Google Scholar] [CrossRef]
- Matheus, L.E.M.; Vieira, A.B.; Vieira, L.F.M.; Vieira, M.A.M.; Gnawali, O. Visible Light Communication: Concepts, Applications and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3204–3237. [Google Scholar] [CrossRef]
- Hong, H.; Li, Z. Hybrid Adaptive Bias OFDM-Based IM/DD Visible Light Communication System. Photonics 2021, 8, 257. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, W.; Yang, Y.; Deng, X.; Liu, M.; Chen, C. Pairwise Coded mCAP with Chaotic Dual-Mode Index Modulation for Secure Bandlimited VLC Systems. Photonics 2022, 9, 141. [Google Scholar] [CrossRef]
- Guo, J.-N.; Zhang, J.; Xin, G.; Li, L. Constant Transmission Efficiency Dimming Control Scheme for VLC Systems. Photonics 2021, 8, 7. [Google Scholar] [CrossRef]
- Wu, T.; Wang, Z.; Han, S.; Yu, J.; Jiang, Y. Demonstration of Performance Improvement in Multi-User NOMA VLC System Using Joint Transceiver Optimization. Photonics 2022, 9, 168. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, G.; Li, J.; Ma, Z.; Guo, Y. Experimental Demonstration and Simulation of Bandwidth-Limited Underwater Wireless Optical Communication with MLSE. Photonics 2022, 9, 182. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.; Chen, D.; Deng, X.; Yan, F.; Li, S.; Hu, Z. Experimental Demonstration of High-Sensitivity Underwater Optical Wireless Communication Based on Photocounting Receiver. Photonics 2021, 8, 467. [Google Scholar] [CrossRef]
- Wei, Z.; Li, Y.; Wang, Z.; Fang, J.; Fu, H. Dual-Branch Pre-Distorted Enhanced ADO-OFDM for Full-Duplex Underwater Optical Wireless Communication System. Photonics 2021, 8, 368. [Google Scholar] [CrossRef]
- Li, H.; Chen, T.; Wang, Z.; Cao, B.; Li, Y.; Zhang, J. Low-Complexity Sampling Frequency Offset Estimation and Compensation Scheme for OFDM-Based UWOC System. Photonics 2022, 9, 216. [Google Scholar] [CrossRef]
- Martínez-Ciro, R.A.; López-Giraldo, F.E.; Luna-Rivera, J.M.; Ramírez-Aguilera, A.M. An Indoor Visible Light Positioning System for Multi-Cell Networks. Photonics 2022, 9, 146. [Google Scholar] [CrossRef]
- Zhan, L.; Zhao, H.; Zhang, W.; Lin, J. An Optimal Scheme for the Number of Mirrors in Vehicular Visible Light Communication via Mirror Array-Based Intelligent Reflecting Surfaces. Photonics 2022, 9, 129. [Google Scholar] [CrossRef]
- Liu, B.; Tang, P.; Zhang, J.; Yin, Y.; Liu, G.; Xia, L. Propagation Characteristics Comparisons between mmWave and Visible Light Bands in the Conference Scenario. Photonics 2022, 9, 228. [Google Scholar] [CrossRef]
- Apolo, J.A.; Ortega, B.; Almenar, V. Hybrid POF/VLC Links Based on a Single LED for Indoor Communications. Photonics 2021, 8, 254. [Google Scholar] [CrossRef]
- Park, Y.-J.; Kim, J.-Y.; Jung, J.-I. Predistortion Approaches Using Coefficient Approximation and Bidirectional LSTM for Nonlinearity Compensation in Visible Light Communication. Photonics 2022, 9, 198. [Google Scholar] [CrossRef]
- Cao, B.; Yuan, K.; Li, H.; Duan, S.; Li, Y.; Ouyang, Y. The Performance Improvement of VLC-OFDM System Based on Reservoir Computing. Photonics 2022, 9, 185. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Z.; Zhang, J. Neural Network-Based Transceiver Design for VLC System over ISI Channel. Photonics 2022, 9, 190. [Google Scholar] [CrossRef]
- Le-Tran, M.; Kim, S. Deep Learning-Assisted Index Estimator for Generalized LED Index Modulation OFDM in Visible Light Communication. Photonics 2021, 8, 168. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C. Special Issue on “Visible Light Communication (VLC)”. Photonics 2022, 9, 284. https://doi.org/10.3390/photonics9050284
Chen C. Special Issue on “Visible Light Communication (VLC)”. Photonics. 2022; 9(5):284. https://doi.org/10.3390/photonics9050284
Chicago/Turabian StyleChen, Chen. 2022. "Special Issue on “Visible Light Communication (VLC)”" Photonics 9, no. 5: 284. https://doi.org/10.3390/photonics9050284
APA StyleChen, C. (2022). Special Issue on “Visible Light Communication (VLC)”. Photonics, 9(5), 284. https://doi.org/10.3390/photonics9050284