Understanding In Vivo Chromatic Aberrations in Pseudophakic Eyes Using on Bench and Computational Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intraocular Lenses
2.2. Computational Simulations
2.3. On-Bench Measurements
2.4. In Vivo Measurements
2.5. Data Analysis
3. Results
3.1. Computational Ray Tracing: Polychromatic Phakic and Pseudophakic Optical Quality
3.2. On-Bench Measurements
3.3. Chromatic Difference of Focus: Far Vision
3.4. Chromatic Difference of Focus: Multifocal IOLs
Computational Ray Tracing | On Bench | In Vivo | ||
---|---|---|---|---|
Monofocal hydrophobic | Far | 0.0063 | 0.0033 | 0.0063 |
Monofocal hydrophilic | Far | 0.0054 | 0.0018 | 0.0054 |
MIOL hydrophobic | Far | 0.0044 | 0.0022 | 0.0044 |
Int | 0.0034 | 0.0019 | 0.0029 | |
Near | 0.0008 | −0.0033 | 0.0008 | |
MIOL hydrophilic | Far | 0.0037 | 0.0042 | 0.0037 |
Int | 0.0018 | −0.0006 | 0.0011 | |
Near | −0.0007 | −0.0051 | 0.0011 |
3.5. Pseudophakic Longitudinal Chromatic Aberration
4. Discussion
5. Conclusions
- Diffractive multifocal intraocular lenses modulate chromatic aberration and reduce it at certain distances due to interactions of refractive and diffractive chromatic components, displacing the position and peak magnitude of the foci at different visual distances, and even reversing chromatic aberration at some distances.
- Predicted differences due to the material and designs of the IOLs are confirmed by the experimental data (on bench and in vivo). Patients implanted with multifocal IOLs with diffractive designs exhibit decreased LCA at intermediate and near distances with respect to those at far, consistent with both computer simulations and experimental data, for both hydrophilic and hydrophobic materials.
- We demonstrate that experimental chromatic difference of focus (slopes and LCA) predicted by simulations in computer eye models matches the experimental findings well. We found a good correspondence between the positions of the peaks of the through-focus curves (best focus) and the computational predictions of those peaks at far, intermediate, and near vision. Computational ray tracing and on bench measurements allow for evaluating in vivo chromatic aberration with different materials and designs of multifocal diffractive intraocular lenses.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gatinel, D.; Loicq, J. Clinically Relevant Optical Properties of Bifocal, Trifocal, and Extended Depth of Focus Intraocular Lenses. J. Refract. Surg. 2016, 32, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thibos, L.N.; Bradley, A.; Zhang, X.X. Effect of ocular chromatic aberration on monocular visual performance. Optom. Vis. Sci. 1991, 68, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Graef, K.; Schaeffel, F. Control of accommodation by longitudinal chromatic aberration and blue cones. J. Vis. 2012, 12, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atchison, D.A.; Smith, G. Chromatic dispersions of the ocular media of human eyes. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2005, 22, 29–37. [Google Scholar] [CrossRef]
- Bedford, R.E.; Wyszecki, G. Axial chromatic aberration of the human eye. J. Opt. Soc. Am. 1957, 47, 564–565. [Google Scholar] [CrossRef]
- Howarth, P.A. The lateral chromatic aberration of the eye. Ophthalmic Physiol. Opt. 1984, 4, 223–226. [Google Scholar] [CrossRef]
- Rynders, M.; Lidkea, B.; Chisholm, W.; Thibos, L.N. Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes. J. Opt. Soc. Am. A 1995, 12, 2348–2357. [Google Scholar] [CrossRef]
- Thibos, L.N.; Bradley, A.; Still, D.L.; Zhang, X.; Howarth, P.A. Theory and measurement of ocular chromatic aberration. Vision Res. 1990, 30, 33–49. [Google Scholar] [CrossRef]
- Marcos, S.; Burns, S.A.; Prieto, P.M.; Navarro, R.; Baraibar, B. Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes. Vision Res. 2001, 41, 3861–3871. [Google Scholar] [CrossRef] [Green Version]
- Aissati, S.; Vinas, M.; Benedi-Garcia, C.; Dorronsoro, C.; Marcos, S. Testing the effect of ocular aberrations in the perceived transverse chromatic aberration. Biomed. Opt. Express 2020, 11, 4052–4068. [Google Scholar] [CrossRef]
- Vinas, M.; Dorronsoro, C.; Cortes, D.; Pascual, D.; Marcos, S. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics. Biomed. Opt. Express 2015, 6, 948–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcos, S.; Benedi-Garcia, C.; Aissati, S.; Gonzalez-Ramos, A.M.; Lago, C.M.; Radhkrishnan, A.; Romero, M.; Vedhakrishnan, S.; Sawides, L.; Vinas, M. VioBio lab adaptive optics: Technology and applications by women vision scientists. Ophthalmic Physiol. Opt. 2020, 40, 75–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ware, C. Human axial chromatic aberration found not to decline with age. Graefes Arch. Clin. Exp. Ophthalmol. 1982, 218, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.; Unterhuber, A.; Prieto, P.; Hermann, B.; Drexler, W.; Artal, P. Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser. Opt. Express 2005, 13, 400–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinas, M.; Dorronsoro, C.; Garzon, N.; Poyales, F.; Marcos, S. In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses. J. Cataract. Refract. Surg. 2015, 41, 2115–2124. [Google Scholar] [CrossRef]
- Zhao, H.; Mainster, M.A. The effect of chromatic dispersion on pseudophakic optical performance. Br. J. Ophthalmol. 2007, 91, 1225–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, T.; Kubota, S.; Watanabe, I.; Aoshima, S. Chromatic aberration in pseudophakic eyes. Nihon Ganka Gakkai Zasshi 1999, 103, 237–242. [Google Scholar] [CrossRef]
- Negishi, K.; Ohnuma, K.; Hirayama, N.; Noda, T.; Policy-Based Medical Services Network Study Group for Intraocular Lens and Refractive Surgery. Effect of chromatic aberration on contrast sensitivity in pseudophakic eyes. Arch. Ophthalmol. 2001, 119, 1154–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, A.; Xu, R.; Wang, H.; Jaskulski, M.; Hong, X.; Brink, N.; Van Noy, S. The Impact of IOL Abbe Number on Polychromatic Image Quality of Pseudophakic Eyes. Clin. Ophthalmol. 2020, 14, 2271–2281. [Google Scholar] [CrossRef] [PubMed]
- Marcos, S.; Romero, M.; Benedi-García, C.; Gonzalez-Ramos, A.; Vinas, M.; Alejandre, N.; Jiménez-Alfaro, I. Interaction of monochromatic and chromatic aberrations in pseudophakic patients. J. Refract. Surg. 2020; in press. [Google Scholar] [CrossRef] [PubMed]
- Eppig, T.; Rawer, A.; Hoffmann, P.; Langenbucher, A.; Schroder, S. On the Chromatic Dispersion of Hydrophobic and Hydrophilic Intraocular Lenses. Optom. Vis. Sci 2020, 97, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Hiraoka, T.; Yamamoto, T.; Takagi, S.; Hirohara, Y.; Oshika, T.; Mihashi, T. Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers. PLoS ONE 2016, 11, e0156227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Merino, P.; Dorronsoro, C.; Llorente, L.; Duran, S.; Jimenez-Alfaro, I.; Marcos, S. In vivo chromatic aberration in eyes implanted with intraocular lenses. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2654–2661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siedlecki, D.; Jozwik, A.; Zajac, M.; Hill-Bator, A.; Turno-Krecicka, A. In vivo longitudinal chromatic aberration of pseudophakic eyes. Optom Vis Sci 2014, 91, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Bobier, C.W.; Sivak, J.G. Chromoretinoscopy. Vision Res. 1978, 18, 247–250. [Google Scholar] [CrossRef]
- Artal, P.; Manzanera, S.; Piers, P.; Weeber, H. Visual effect of the combined correction of spherical and longitudinal chromatic aberrations. Opt. Express 2010, 18, 1637–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weeber, H.A.; Piers, P.A. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration. J. Refract. Surg. 2012, 28, 48–52. [Google Scholar] [CrossRef]
- Simpson, M.J. Diffractive multifocal intraocular lens image quality. Appl. Opt. 1992, 31, 3621–3626. [Google Scholar] [CrossRef]
- Charman, W.N. Developments in the correction of presbyopia II: Surgical approaches. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 2014, 34, 397–426. [Google Scholar] [CrossRef]
- Ravikumar, S.; Bradley, A.; Thibos, L.N. Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses. J. Cataract. Refract. Surg. 2014, 40, 1192–1204. [Google Scholar] [CrossRef]
- Castignoles, F.; Flury, M.; Lepine, T. Comparison of the efficiency, MTF and chromatic properties of four diffractive bifocal intraocular lens designs. Opt. Express 2010, 18, 5245–5256. [Google Scholar] [CrossRef] [Green Version]
- Vega, F.; Millan, M.S.; Vila-Terricabras, N.; Alba-Bueno, F. Visible Versus Near-Infrared Optical Performance of Diffractive Multifocal Intraocular Lenses. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7345–7351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinas, M.; Benedi-Garcia, C.; Aissati, S.; Pascual, D.; Akondi, V.; Dorronsoro, C.; Marcos, S. Visual simulators replicate vision with multifocal lenses. Sci. Rep. 2019, 9, 1539. [Google Scholar] [CrossRef] [Green Version]
- Vinas, M.; Aissati, S.; Gonzalez-Ramos, A.M.; Romero, M.; Sawides, L.; Akondi, V.; Gambra, E.; Dorronsoro, C.; Karkkainen, T.; Nankivil, D.; et al. Optical and Visual Quality With Physical and Visually Simulated Presbyopic Multifocal Contact Lenses. Transl. Vis. Sci. Technol. 2020, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Vedhakrishnan, S.; Vinas, M.; Benedi-Garcia, C.; Casado, P.; Marcos, S. Visual performance with multifocal lenses in young adults and presbyopes. PLoS ONE 2022, 17, e0263659. [Google Scholar] [CrossRef] [PubMed]
- Davison, J.A.; Simpson, M.J. History and development of the apodized diffractive intraocular lens. J. Cataract. Refract. Surg. 2006, 32, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Gatinel, D.; Houbrechts, Y. Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench. J. Cataract. Refract. Surg. 2013, 39, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Loicq, J.; Willet, N.; Gatinel, D. Topography and longitudinal chromatic aberration characterizations of refractive-diffractive multifocal intraocular lenses. J. Cataract. Refract. Surg. 2019, 45, 1650–1659. [Google Scholar] [CrossRef]
- Alio, J.L.; Elkady, B.; Ortiz, D.; Bernabeu, G. Clinical outcomes and intraocular optical quality of a diffractive multifocal intraocular lens with asymmetrical light distribution. J. Cataract. Refract. Surg. 2008, 34, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Blaylock, J.F.; Si, Z.; Vickers, C. Visual and refractive status at different focal distances after implantation of the ReSTOR multifocal intraocular lens. J. Cataract. Refract. Surg. 2006, 32, 1464–1473. [Google Scholar] [CrossRef] [PubMed]
- Petermeier, K.; Szurman, P. Subjective and objective outcome following implantation of the apodized diffractive AcrySof ReSTOR. Ophthalmologe 2007, 104, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Mesa, R.R.; Monteiro, T. Continuous Transitional Focus (CTF): A New Concept in Ophthalmic Surgery. Ophthalmol. Ther. 2018, 7, 223–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, W.A.; Lane, S.S.; Zhou, F. Performance of presbyopia-correcting intraocular lenses in distance optical bench tests. J. Cataract. Refract. Surg. 2009, 35, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Zheleznyak, L.; Macrae, S.; Tchah, H.; Yoon, G. Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system. J. Cataract. Refract. Surg. 2011, 37, 1305–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepose, J.S.; Wang, D.; Altmann, G.E. Comparison of through-focus image sharpness across five presbyopia-correcting intraocular lenses. Am. J. Ophthalmol. 2012, 154, 20–28.e21. [Google Scholar] [CrossRef]
- Vega, F.; Alba-Bueno, F.; Millan, M.S. Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5695–5701. [Google Scholar] [CrossRef] [Green Version]
- Millan, M.S.; Vega, F.; Rios-Lopez, I. Polychromatic Image Performance of Diffractive Bifocal Intraocular Lenses: Longitudinal Chromatic Aberration and Energy Efficiency. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2021–2028. [Google Scholar] [CrossRef] [Green Version]
- Vinas, M.; Gonzalez-Ramos, A.; Dorronsoro, C.; Akondi, V.; Garzon, N.; Poyales, F.; Marcos, S. In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses. J. Refract. Surg. 2017, 33, 736–742. [Google Scholar] [CrossRef]
- Vinas, M.; Gonzalez-Ramos, A.M.; Aissati, S.; Garzon, N.; Poyales, F.; Dorronsoro, C.; Marcos, S. Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Hydrophobic IOLs. J. Refract. Surg. 2020, 36, 804–810. [Google Scholar] [CrossRef]
- Canovas, C.; Artal, P. Customized eye models for determining optimized intraocular lenses power. Biomed. Opt. Express 2011, 2, 1649–1662. [Google Scholar] [CrossRef] [Green Version]
- Olsen, T.; Hoffmann, P. C constant: New concept for ray tracing-assisted intraocular lens power calculation. J. Cataract. Refract. Surg. 2014, 40, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Minami, K.; Kataoka, Y.; Matsunaga, J.; Ohtani, S.; Honbou, M.; Miyata, K. Ray-tracing intraocular lens power calculation using anterior segment optical coherence tomography measurements. J. Cataract. Refract. Surg. 2012, 38, 1758–1763. [Google Scholar] [CrossRef] [PubMed]
- Rosales, P.; Marcos, S. Customized computer models of eyes with intraocular lenses. Opt. Express 2007, 15, 2204–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabernero, J.; Piers, P.; Benito, A.; Redondo, M.; Artal, P. Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4651–4658. [Google Scholar] [CrossRef]
- Gatinel, D.; Pagnoulle, C.; Houbrechts, Y.; Gobin, L. Design and qualification of a diffractive trifocal optical profile for intraocular lenses. J. Cataract. Refract. Surg. 2011, 37, 2060–2067. [Google Scholar] [CrossRef]
- Liou, H.L.; Brennan, N.A. Anatomically accurate, finite model eye for optical modeling. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1997, 14, 1684–1695. [Google Scholar] [CrossRef]
- Iskander, D.R. Computational aspects of the visual Strehl ratio. Optom. Vis. Sci. 2006, 83, 57–59. [Google Scholar] [CrossRef]
- Marsack, J.D.; Thibos, L.N.; Applegate, R.A. Metrics of optical quality derived from wave aberrations predict visual performance. J. Vis. 2004, 4, 322–328. [Google Scholar] [CrossRef]
- Marcos, S.; Martinez-Enriquez, E.; Vinas, M.; de Castro, A.; Dorronsoro, C.; Bang, S.P.; Yoon, G.; Artal, P. Simulating Outcomes of Cataract Surgery: Important Advances in Ophthalmology. Annu. Rev. Biomed. Eng. 2021, 23, 277–306. [Google Scholar] [CrossRef]
- Guirao, A.; Williams, D.R. A method to predict refractive errors from wave aberration data. Optom Vis. Sci 2003, 80, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Benedi-Garcia, C.; Velasco-Ocana, M.; Dorronsoro, C.; Pascual, D.; Hernandez, M.; Marin, G.; Marcos, S. Perceptual impact of astigmatism induction in presbyopes. Vision Res. 2019, 165, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Thibos, L.N.; Ye, M.; Zhang, X.; Bradley, A. The chromatic eye: A new reduced-eye model of ocular chromatic aberration in humans. Appl. Opt. 1992, 31, 3594–3600. [Google Scholar] [CrossRef] [PubMed]
- Llorente, L.; Diaz-Santana, L.; Lara-Saucedo, D.; Marcos, S. Aberrations of the human eye in visible and near infrared illumination. Optom. Vis. Sci. 2003, 80, 26–35. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.S.; Marcos, S.; Prieto, P.M.; Burns, S.A. Imperfect optics may be the eye’s defence against chromatic blur. Nature 2002, 417, 174–176. [Google Scholar] [CrossRef]
- Benedi-Garcia, C.; Vinas, M.; Dorronsoro, C.; Burns, S.A.; Peli, E.; Marcos, S. Vision is protected against blue defocus. Sci. Rep. 2021, 11, 352. [Google Scholar] [CrossRef]
A Phakic eyes | ||
Sample | 5 young subjects (5 eyes) | Crystalline lens |
Age | 28.60 ± 1.89 years | |
Subjective refraction | 0 to −4.50 D (−1.15 ± 0.95 D); astigmatism ≤ −0.5 D | |
Measurements | Monocular | |
Study | Vinas et al. BOE 2015 doi: 10.1364/OE.23.00948 | |
B Pseudophakic eyes | ||
B.1 Patients implanted with hydrophilic and hydrophobic monofocal IOL | ||
Sample | 9 subjects (18 eyes) | Monofocal hydrophilic and hydrophobic IOL |
Age | 73.92 ± 4.28 years | |
Subjective refraction | −3.25 to +3.00 D (Sph: +0.18 ± 0.26 D; cyl: −0.42 ± 0.52 D) | |
Measurements | Monocular. Both eyes (Bilateral implantation) | |
IOL design | Monofocal asferic | |
IOL material | Hydrophilic (Abbe number: 58; RI: 1.46; PODAY) Hydrophobic (Abbe number: 41.91; RI: 1.52; PODEYE) | |
Study | Vinas et al. JCRS 2015 doi: 10.1016/j.jcrs.2015.11.009 | |
B.2 Patients implanted with hydrophilic M-IOL | ||
Sample | 10 subjects (20 eyes) | Trifocal hydrophilic MIOL |
Age | 66.70 ± 3.25 years | |
Subjective refraction | −0.75 to + 0.75 D (Sph: +0.06 ± 0.170 D; cyl: −0.28 ± 0.40 D) | |
Measurements | Monocular. Both eyes (Bilateral implantation) | |
IOL design | Trifocal diffractive | |
IOL material | Hydrophilic (Abbe number: 58; RI: 1.46; POD F) | |
Study | Vinas et al. JRS 2017 doi: 10.3928/1081597X-20170814-01 | |
B.3 Patients implanted with hydrophobic M-IOL | ||
Sample | 10 subjects (20 eyes) | Trifocal hydrophobic MIOL |
Age | 64.56 ± 3.52 years | |
Subjective refraction | −1.00 to + 1.25 D (Sph: −0.05 ± 0.13 D; cyl: −0.19 ± 0.34 D) | |
Measurements | Monocular. Both eyes (Bilateral implantation) | |
IOL design | Trifocal diffractive | |
IOL material | Hydrophobic (Abbe number: 41.91; RI: 1.52; POD F GF) | |
Study | Vinas et al. JRS 2020 doi: 10.3928/1081597X-20200930-01 | |
RI: refractive index; MIOL: multifocal intraocular lens; |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinas-Pena, M.; de Castro, A.; Dorronsoro, C.; Gonzalez-Ramos, A.; Redzovic, S.; Willet, N.; Garzon, N.; Marcos, S. Understanding In Vivo Chromatic Aberrations in Pseudophakic Eyes Using on Bench and Computational Approaches. Photonics 2022, 9, 226. https://doi.org/10.3390/photonics9040226
Vinas-Pena M, de Castro A, Dorronsoro C, Gonzalez-Ramos A, Redzovic S, Willet N, Garzon N, Marcos S. Understanding In Vivo Chromatic Aberrations in Pseudophakic Eyes Using on Bench and Computational Approaches. Photonics. 2022; 9(4):226. https://doi.org/10.3390/photonics9040226
Chicago/Turabian StyleVinas-Pena, Maria, Alberto de Castro, Carlos Dorronsoro, Ana Gonzalez-Ramos, Suad Redzovic, Nicolas Willet, Nuria Garzon, and Susana Marcos. 2022. "Understanding In Vivo Chromatic Aberrations in Pseudophakic Eyes Using on Bench and Computational Approaches" Photonics 9, no. 4: 226. https://doi.org/10.3390/photonics9040226
APA StyleVinas-Pena, M., de Castro, A., Dorronsoro, C., Gonzalez-Ramos, A., Redzovic, S., Willet, N., Garzon, N., & Marcos, S. (2022). Understanding In Vivo Chromatic Aberrations in Pseudophakic Eyes Using on Bench and Computational Approaches. Photonics, 9(4), 226. https://doi.org/10.3390/photonics9040226