Is Heralded Two-Photon Excited Fluorescence with Single Absorbers Possible with Current Technology?
Abstract
:1. Introduction
2. Fundamentals and Background
2.1. Classical TPA
2.1.1. Enhanced Classical TPA
2.1.2. Strong Photon-Absorber Coupling
2.2. TPA and Photon Statistics
2.3. Entangled TPA
3. The Proposed Setup for Heralded TPEF
- A heralded two-photon scheme utilizing PP waveguide crystals,
- A high coupling between absorber and excitation field and an efficient photon collector for the fluorescence,
- A single absorber with a plasmonic enhancement antenna, and
- State-of-the-art single-photon counting devices.
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Photon Statistics and Nonclassical Light Sources
Appendix A.1. Photon Bunching
Appendix A.2. Photon Pair Sources
Appendix A.3. Single Photon Sources
References
- Göppert-Mayer, M. Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 1931, 401, 273–294. [Google Scholar] [CrossRef]
- Kaiser, W.; Garrett, C.G.B. Two-Photon Excitation in CaF2: Eu2+. Phys. Rev. Lett. 1961, 7, 229–231. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: San Diego, CA, USA; Burlington, MA, USA, 2008. [Google Scholar]
- Aspect, A.; Grangier, P.; Roger, G. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Lett. 1982, 49, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Polycarpou, C.; Cassemiro, K.N.; Venturi, G.; Zavatta, A.; Bellini, M. Adaptive Detection of Arbitrarily Shaped Ultrashort Quantum Light States. Phys. Rev. Lett. 2012, 109, 053602. [Google Scholar] [CrossRef]
- Manning, A.G.; Khakimov, R.I.; Dall, R.G.; Truscott, A.G. Wheeler’s delayed-choice gedanken experiment with a single atom. Nat. Phys. 2015, 11, 539–542. [Google Scholar] [CrossRef]
- Dayan, B.; Parkins, A.S.; Aoki, T.; Ostby, E.P.; Vahala, K.J.; Kimble, H.J. A Photon Turnstile Dynamically Regulated by One Atom. Science 2008, 319, 1062–1065. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.E.; Vuletic, V.; Lukin, M.D. Quantum nonlinear optics [mdash] photon by photon. Nat. Photonics 2014, 8, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Denk, W.; Strickler, J.; Webb, W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Zipfel, W.R.; Williams, R.M.; Webb, W.W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotech. 2003, 21, 1369–1377. [Google Scholar] [CrossRef]
- Dong, J.; Revilla-Sanchez, R.; Moss, S.; Haydon, P.G. Multiphoton in vivo imaging of amyloid in animal models of Alzheimer’s disease. Neuropharmacology 2010, 59, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Hopt, A.; Neher, E. Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys. J. 2001, 80, 2029–2036. [Google Scholar] [CrossRef] [Green Version]
- Terenziani, F.; Katan, C.; Badaeva, E.; Tretiak, S.; Blanchard-Desce, M. Enhanced Two-Photon Absorption of Organic Chromophores: Theoretical and Experimental Assessments. Adv. Mater. 2008, 20, 4641–4678. [Google Scholar] [CrossRef] [Green Version]
- Wenseleers, W.; Stellacci, F.; Meyer-Friedrichsen, T.; Mangel, T.; Bauer, C.A.; Pond, S.J.; Marder, S.R.; Perry, J.W. Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters. J. Phys. Chem. B 2002, 106, 6853–6863. [Google Scholar] [CrossRef] [Green Version]
- Cohanoschi, I.; Yao, S.; Belfield, K.D.; Hernández, F.E. Effect of the concentration of organic dyes on their surface plasmon enhanced two-photon absorption cross section using activated Au nanoparticles. J. Appl. Phys. 2007, 101, 086112. [Google Scholar] [CrossRef] [Green Version]
- Mollow, B.R. Two-Photon Absorption and Field Correlation Functions. Phys. Rev. 1968, 175, 1555–1563. [Google Scholar] [CrossRef]
- Gea-Banacloche, J. Two-photon absorption of nonclassical light. Phys. Rev. Lett. 1989, 62, 1603–1606. [Google Scholar] [CrossRef] [Green Version]
- Javanainen, J.; Gould, P.L. Linear intensity dependence of a two-photon transition rate. Phys. Rev. A 1990, 41, 5088–5091. [Google Scholar] [CrossRef]
- Boitier, F.; Godard, A.; Rosencher, E.; Fabre, C. Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors. Nat. Phys. 2009, 5, 267–270. [Google Scholar] [CrossRef]
- Jechow, A.; Seefeldt, M.; Kurzke, H.; Heuer, A.; Menzel, R. Enhanced two-photon excited fluorescence from imaging agents using true thermal ligh. Nat. Photonics 2013, 7, 973. [Google Scholar] [CrossRef] [Green Version]
- Georgiades, N.P.; Polzik, E.S.; Edamatsu, K.; Kimble, H.J.; Parkins, A.S. Nonclassical Excitation for Atoms in a Squeezed Vacuum. Phys. Rev. Lett. 1995, 75, 3426–3429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.I.; Goodson, T., III. Entangled Photon Absorption in an Organic Porphyrin Dendrimer. J. Phys. Chem. B 2006, 110, 25582–25585. [Google Scholar] [CrossRef] [PubMed]
- Harpham, M.R.; Süzer, Ö.; Ma, C.Q.; Bäuerle, P.; Goodson, T., III. Thiophene Dendrimers as Entangled Photon Sensor Materials. J. Am. Chem. Soc. 2009, 131, 973–979. [Google Scholar] [CrossRef]
- Upton, L.; Harpham, M.; Süzer, Ö.; Richter, M.; Mukamel, S.; Goodson, T., III. Optically Excited Entangled States in Organic Molecules Illuminate the Dark. J. Phys. Chem. Lett. 2013, 4, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Villabona-Monsalve, J.P.; Calderón-Losada, O.; Nuñez Portela, M.; Valencia, A. Entangled Two Photon Absorption Cross Section on the 808 nm Region for the Common Dyes Zinc Tetraphenylporphyrin and Rhodamine B. J. Phys. Chem. A 2017, 121, 7869–7875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parzuchowski, K.M.; Mikhaylov, A.; Mazurek, M.D.; Wilson, R.N.; Lum, D.J.; Gerrits, T.; Camp, C.H., Jr.; Stevens, M.J.; Jimenez, R. Setting Bounds on Entangled Two-Photon Absorption Cross Sections in Common Fluorophores. Phys. Rev. Appl. 2021, 15, 044012. [Google Scholar] [CrossRef]
- Landes, T.; Raymer, M.G.; Allgaier, M.; Merkouche, S.; Smith, B.J.; Marcus, A.H. Quantifying the enhancement of two-photon absorption due to spectral-temporal entanglement. Opt. Express 2021, 29, 20022–20033. [Google Scholar] [CrossRef] [PubMed]
- Corona-Aquino, S.; Calderón-Losada, O.; Li-Gómez, M.Y.; Cruz-Ramirez, H.; Alvarez-Venicio, V.; Carreón-Castro, M.d.P.; León-Montiel, R.d.J.; U’Ren, A.B. Experimental study on the effects of photon-pair temporal correlations in entangled two-photon absorption. arXiv 2021, arXiv:2101.10987. [Google Scholar]
- Teich, M.C.; Saleh, B.E. Entangled-photon microscopy. Cesk. Cas. Fyz 1997, 47, 3–8. [Google Scholar]
- Saleh, B.E.; Jost, B.M.; Fei, H.B.; Teich, M.C. Entangled-photon virtual-state spectroscopy. Phys. Rev. Lett. 1998, 80, 3483. [Google Scholar] [CrossRef]
- Schlawin, F.; Dorfman, K.E.; Fingerhut, B.P.; Mukamel, S. Manipulation of two-photon-induced fluorescence spectra of chromophore aggregates with entangled photons: A simulation study. Phys. Rev. A 2012, 86, 023851. [Google Scholar] [CrossRef] [Green Version]
- Schlawin, F.; Dorfman, K.E.; Fingerhut, B.P.; Mukamel, S. Suppression of population transport and control of exciton distributions by entangled photons. Nat. Commun. 2013, 4, 1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorfman, K.E.; Schlawin, F.; Mukamel, S. Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys. 2016, 88, 045008. [Google Scholar] [CrossRef] [Green Version]
- Schlawin, F. Entangled photon spectroscopy. J. Phys. At. Mol. Opt. Phys. 2017, 50, 203001. [Google Scholar] [CrossRef]
- Mertenskötter, L.; Busch, K.; León-Montiel, R.d.J. Entangled two-photon absorption spectroscopy with varying pump wavelengths. JOSA B 2021, 38, C63–C68. [Google Scholar] [CrossRef]
- Jechow, A.; Lichtner, M.; Menzel, R.; Radziunas, M.; Skoczowsky, D.; Vladimirov, A.G. Stripe-array diode-laser in an off-axis external cavity: Theory and experiment. Opt. Express 2009, 17, 19599–19604. [Google Scholar] [CrossRef] [PubMed]
- Spasibko, K.Y.; Kopylov, D.A.; Krutyanskiy, V.L.; Murzina, T.V.; Leuchs, G.; Chekhova, M.V. Multiphoton Effects Enhanced due to Ultrafast Photon-Number Fluctuations. Phys. Rev. Lett. 2017, 119, 223603. [Google Scholar] [CrossRef] [Green Version]
- U’Ren, A.B.; Silberhorn, C.; Erdmann, R.; Banaszek, K.; Grice, W.P.; Walmsley, I.A.; Raymer, M.G. Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion. Las. Phys. 2005, 15, 146–161. [Google Scholar]
- Guerreiro, T.; Pomarico, E.; Sanguinetti, B.; Sangouard, N.; Pelc, J.S.; Langrock, C.; Fejer, M.M.; Zbinden, H.; Thew, R.T.; Gisin, N. Interaction of independent single photons based on integrated nonlinear optics. Nat. Commun. 2013, 4, 2324. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, T.; Martin, A.; Sanguinetti, B.; Pelc, J.S.; Langrock, C.; Fejer, M.M.; Gisin, N.; Zbinden, H.; Sangouard, N.; Thew, R.T. Nonlinear Interaction between Single Photons. Phys. Rev. Lett. 2014, 113, 173601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albota, M.; Beljonne, D.; Brédas, J.L.; Ehrlich, J.E.; Fu, J.Y.; Heikal, A.A.; Hess, S.E.; Kogej, T.; Levin, M.D.; Marder, S.R.; et al. Design of Organic Molecules with Large Two-Photon Absorption Cross Sections. Science 1998, 281, 1653–1656. [Google Scholar] [CrossRef] [Green Version]
- Kano, H.; Kawata, S. Two-photon-excited fluorescence enhanced by a surface plasmon. Opt. Lett. 1996, 21, 1848–1850. [Google Scholar] [CrossRef] [PubMed]
- Sivapalan, S.T.; Vella, J.H.; Yang, T.K.; Dalton, M.J.; Swiger, R.N.; Haley, J.E.; Cooper, T.M.; Urbas, A.M.; Tan, L.S.; Murphy, C.J. Plasmonic Enhancement of the Two Photon Absorption Cross Section of an Organic Chromophore Using Polyelectrolyte-Coated Gold Nanorods. Langmuir 2012, 28, 9147–9154. [Google Scholar] [CrossRef] [PubMed]
- Kühn, S.; Håkanson, U.; Rogobete, L.; Sandoghdar, V. Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna. Phys. Rev. Lett. 2006, 97, 017402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakowicz, J.R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 2006, 1, 5–33. [Google Scholar] [CrossRef]
- Streed, E.W.; Norton, B.G.; Jechow, A.; Weinhold, T.J.; Kielpinski, D. Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 2011, 106, 010502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jechow, A.; Norton, B.; Haendel, S.; Blūms, V.; Streed, E.; Kielpinski, D. Controllable optical phase shift over one radian from a single isolated atom. Phys. Rev. Lett. 2013, 110, 113605. [Google Scholar] [CrossRef] [Green Version]
- Jechow, A.; Streed, E.W.; Norton, B.G.; Petrasiunas, M.J.; Kielpinski, D. Wavelength-scale imaging of trapped ions using a phase Fresnel lens. Opt. Lett. 2011, 36, 1371–1373. [Google Scholar] [CrossRef] [Green Version]
- Streed, E.W.; Jechow, A.; Norton, B.G.; Kielpinski, D. Absorption imaging of a single atom. Nat. Commun. 2012, 3, 933. [Google Scholar] [CrossRef] [Green Version]
- Shu, G.; Kurz, N.; Dietrich, M.; Blinov, B. Efficient fluorescence collection from trapped ions with an integrated spherical mirror. Phys. Rev. A 2010, 81, 042321. [Google Scholar] [CrossRef] [Green Version]
- Maiwald, R.; Golla, A.; Fischer, M.; Bader, M.; Heugel, S.; Chalopin, B.; Sondermann, M.; Leuchs, G. Collecting more than half the fluorescence photons from a single ion. Phys. Rev. A 2012, 86, 043431. [Google Scholar] [CrossRef]
- Ghadimi, M.; Blūms, V.; Norton, B.G.; Fisher, P.M.; Connell, S.C.; Amini, J.M.; Volin, C.; Hayden, H.; Pai, C.S.; Kielpinski, D.; et al. Scalable ion–photon quantum interface based on integrated diffractive mirrors. NPJ Quantum Inf. 2017, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Celebrano, M.; Kukura, P.; Renn, A.; Sandoghdar, V. Single-molecule imaging by optical absorption. Nat. Phot. 2011, 5, 95–98. [Google Scholar] [CrossRef]
- Tey, M.K.; Chen, Z.; Aljunid, S.A.; Chng, B.; Maslennikov, G.; Kurtsiefer, C. Strong interaction between light and a single trapped atom without the need for a cavity. Nat. Phys. 2008, 4, 924–927. [Google Scholar] [CrossRef]
- Tey, M.K.; Maslennikov, G.; Liew, T.C.H.; Aljunid, S.A.; Huber, F.; Chng, B.; Chen, Z.; Scarani, V.; Kurtsiefer, C. Interfacing light and single atoms with a lens. New J. Phys 2009, 11, 043011. [Google Scholar] [CrossRef]
- Teich, M.C.; Wolga, G.J. Multiple-Photon Processes and Higher Order Correlation Functions. Phys. Rev. Lett. 1966, 16, 625–628. [Google Scholar] [CrossRef]
- Lambropoulos, P.; Kikuchi, C.; Osborn, R.K. Coherence and Two-Photon Absorption. Phys. Rev. 1966, 144, 1081–1086. [Google Scholar] [CrossRef]
- Shen, Y.R. Quantum Statistics of Nonlinear Optics. Phys. Rev. 1967, 155, 921–931. [Google Scholar] [CrossRef]
- Agarwal, G.S. Field-Correlation Effects in Multiphoton Absorption Processes. Phys. Rev. A 1970, 1, 1445–1459. [Google Scholar] [CrossRef] [Green Version]
- Jechow, A.; Raab, V.; Menzel, R. Tunable 6.8 W narrow bandwidth emission from a single-stripe continuous-wave broad-area laser diode in a simple external cavity. Appl. Opt. 2008, 47, 1447–1450. [Google Scholar] [CrossRef]
- Dayan, B.; Pe’er, A.; Friesem, A.A.; Silberberg, Y. Nonlinear Interactions with an Ultrahigh Flux of Broadband Entangled Photons. Phys. Rev. Lett. 2005, 94, 043602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayan, B. Theory of two-photon interactions with broadband down-converted light and entangled photons. Phys. Rev. A 2007, 76, 043813. [Google Scholar] [CrossRef] [Green Version]
- Jechow, A.; Menzel, R.; Paschke, K.; Erbert, G. Blue-green light generation using high brilliance edge emitting diode lasers. Laser Photonics Rev. 2010, 4, 633–655. [Google Scholar] [CrossRef]
- Jechow, A.; Heuer, A.; Menzel, R. High brightness, tunable biphoton source at 976 nm for quantum spectroscopy. Opt. Express 2008, 16, 13439–13449. [Google Scholar] [CrossRef] [PubMed]
- Gregor, M.; Kuhlicke, A.; Benson, O. Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber. Opt. Express 2009, 17, 24234–24243. [Google Scholar] [CrossRef]
- Alda, I.; Berthelot, J.; Rica, R.A.; Quidant, R. Trapping and manipulation of individual nanoparticles in a planar Paul trap. Appl. Phys. Lett. 2016, 109, 163105. [Google Scholar] [CrossRef] [Green Version]
- Streed, E.W. Unfolding Large Biomolecules. arXiv 2012, arXiv:1211.3168. [Google Scholar]
- Norton, B.; Streed, E.; Petrasiunas, M.; Jechow, A.; Kielpinski, D. Millikelvin spatial thermometry of trapped ions. New J. Phys. 2011, 13, 113022. [Google Scholar] [CrossRef]
- VanDevender, A.P.; Colombe, Y.; Amini, J.; Leibfried, D.; Wineland, D.J. Efficient Fiber Optic Detection of Trapped Ion Fluorescence. Phys. Rev. Lett. 2010, 105, 023001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lum, D.J.; Mazurek, M.D.; Mikhaylov, A.; Parzuchowski, K.M.; Wilson, R.N.; Jimenez, R.; Gerrits, T.; Stevens, M.J.; Cicerone, M.T.; Camp, C.H. Witnessing the survival of time-energy entanglement through biological tissue and scattering media. Biomed. Opt. Express 2021, 12, 3658–3670. [Google Scholar] [CrossRef]
- Stefanov, A. On the role of entanglement in two-photon metrology. Quantum Sci. Technol. 2017, 2, 025004. [Google Scholar] [CrossRef]
- Korzh, B.; Zhao, Q.Y.; Allmaras, J.P.; Frasca, S.; Autry, T.M.; Bersin, E.A.; Beyer, A.D.; Briggs, R.M.; Bumble, B.; Colangelo, M.; et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics 2020, 14, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Shibata, H.; Shimizu, K.; Takesue, H.; Tokura, Y. Ultimate low system dark-count rate for superconducting nanowire single-photon detector. Opt. Lett. 2015, 40, 3428–3431. [Google Scholar] [CrossRef]
- Esmaeil Zadeh, I.; Los, J.W.; Gourgues, R.B.; Chang, J.; Elshaari, A.W.; Zichi, J.R.; Van Staaden, Y.J.; Swens, J.P.; Kalhor, N.; Guardiani, A.; et al. Efficient single-photon detection with 7.7 ps time resolution for photon-correlation measurements. ACS Photonics 2020, 7, 1780–1787. [Google Scholar] [CrossRef]
- Hanbury Brown, R.; Twiss, R.Q. Correlation between Photons in two Coherent Beams of Light. Nature 1956, 177, 27–29. [Google Scholar] [CrossRef]
- Burnham, D.C.; Weinberg, D.L. Observation of Simultaneity in Parametric Production of Optical Photon Pairs. Phys. Rev. Lett. 1970, 25, 84–87. [Google Scholar] [CrossRef]
- Jost, B.; Sergienko, A.; Abouraddy, A.; Saleh, B.; Teich, M. Spatial correlations of spontaneously down-converted photon pairs detected with asingle-photon-sensitive CCD camera. Opt. Express 1998, 3, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.E.; Oshman, M.K.; Byer, R.L. Observation of Tunable Optical Parametric Fluorescence. Phys. Rev. Lett. 1967, 18, 732–734. [Google Scholar] [CrossRef]
- Malygin, A.A.; Perin, A.N.; Sergienko, A.V. Efficient Generator of a Two-Photon field of visible radiation. Sov. J. Quantum Electron. 1981, 11, 939. [Google Scholar] [CrossRef]
- Kwiat, P.G.; Mattle, K.; Weinfurter, H.; Zeilinger, A.; Sergienko, A.V.; Shih, Y. New High-Intensity Source of Polarization-Entangled Photon Pairs. Phys. Rev. Lett. 1995, 75, 4337–4341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouwmeester, D.; Pan, J.W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Experimental quantum teleportation. Nature 1997, 390, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Salter, C.L.; Stevenson, R.M.; Farrer, I.; Nicoll, C.A.; Ritchie, D.A.; Shields, A.J. An entangled-light-emitting diode. Nature 2010, 465, 594–597. [Google Scholar] [CrossRef]
- Wang, L.J.; Hong, C.K.; Friberg, S.R. Generation of correlated photons via four-wave mixing in optical fibres. J. Opt. B Quantum Semiclassical Opt. 2001, 3, 346. [Google Scholar] [CrossRef]
- Vallés, A.; Hendrych, M.; Svozilík, J.; Machulka, R.; Abolghasem, P.; Kang, D.; Bijlani, B.J.; Helmy, A.S.; Torres, J.P. Generation of polarization-entangled photon pairs in a Bragg reflection waveguide. Opt. Express 2013, 21, 10841–10849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boitier, F.; Orieux, A.; Autebert, C.; Lemaître, A.; Galopin, E.; Manquest, C.; Sirtori, C.; Favero, I.; Leo, G.; Ducci, S. Electrically Injected Photon-Pair Source at Room Temperature. Phys. Rev. Lett. 2014, 112, 183901. [Google Scholar] [CrossRef] [PubMed]
- Autebert, C.; Maltese, G.; Halioua, Y.; Boitier, F.; Lemaître, A.; Amanti, M.; Sirtori, C.; Ducci, S. Electrically Injected Twin Photon Emitting Lasers at Room Temperature. Technologies 2016, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Lounis, B.; Orrit, M. Single-photon sources. Rep. Prog. Phys. 2005, 68, 1129. [Google Scholar] [CrossRef]
- Mosley, P.J.; Lundeen, J.S.; Smith, B.J.; Wasylczyk, P.; U’Ren, A.B.; Silberhorn, C.; Walmsley, I.A. Heralded Generation of Ultrafast Single Photons in Pure Quantum States. Phys. Rev. Lett. 2008, 100, 133601. [Google Scholar] [CrossRef] [Green Version]
- Levine, Z.H.; Fan, J.; Chen, J.; Ling, A.; Migdall, A. Heralded, pure-state single-photon source based on a Potassium Titanyl Phosphate waveguide. Opt. Express 2010, 18, 3708–3718. [Google Scholar] [CrossRef]
- Wrigge, G.; Gerhardt, I.; Hwang, J.; Zumofen, G.; Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 2008, 4, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.G.; Chen, X.W.; Eghlidi, H.; Kukura, P.; Lettow, R.; Renn, A.; Sandoghdar, V.; Gotzinger, S. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat. Photonics 2011, 5, 166–169. [Google Scholar] [CrossRef]
- Keller, M.; Lange, B.; Hayasaka, K.; Lange, W.; Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 2004, 431, 1075–1078. [Google Scholar] [CrossRef] [PubMed]
- McKeever, J.; Boca, A.; Boozer, A.D.; Miller, R.; Buck, J.R.; Kuzmich, A.; Kimble, H.J. Deterministic Generation of Single Photons from One Atom Trapped in a Cavity. Science 2004, 303, 1992–1994. [Google Scholar] [CrossRef] [Green Version]
- Michler, P.; Imamoglu, A.; Mason, M.D.; Carson, P.J.; Strouse, G.F.; Buratto, S.K. Quantum correlation among photons from a single quantum dot at room temperature. Nature 2000, 406, 968–970. [Google Scholar] [CrossRef]
- Kuhlmann, A.V.; Prechtel, J.H.; Houel, J.; Ludwig, A.; Reuter, D.; Wieck, A.D.; Warburton, R.J. Transform-limited single photons from a single quantum dot. Nat. Commun. 2015, 6, 8204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnauber, P.; Thoma, A.; Heine, C.V.; Schlehahn, A.; Gantz, L.; Gschrey, M.; Schmidt, R.; Hopfmann, C.; Wohlfeil, B.; Schulze, J.H.; et al. Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses. Technologies 2015, 4, 1. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, R.; Bell, B.A.; Choi, D.Y.; Chae, C.J.; Xiong, C. Interfering Heralded Single Photons from Two Separate Silicon Nanowires Pumped at Different Wavelengths. Technologies 2016, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Boretti, A.; Rosa, L. Latest advances in the generation of single photons in silicon carbide. Technologies 2016, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Sipahigil, A.; Goldman, M.L.; Togan, E.; Chu, Y.; Markham, M.; Twitchen, D.J.; Zibrov, A.S.; Kubanek, A.; Lukin, M.D. Quantum Interference of Single Photons from Remote Nitrogen-Vacancy Centers in Diamond. Phys. Rev. Lett. 2012, 108, 143601. [Google Scholar] [CrossRef]
- Schietinger, S.; Barth, M.; Aichele, T.; Benson, O. Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metal-Diamond Hybrid Structure at Room Temperature. Nano Lett. 2009, 9, 1694–1698. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jechow, A. Is Heralded Two-Photon Excited Fluorescence with Single Absorbers Possible with Current Technology? Photonics 2022, 9, 52. https://doi.org/10.3390/photonics9020052
Jechow A. Is Heralded Two-Photon Excited Fluorescence with Single Absorbers Possible with Current Technology? Photonics. 2022; 9(2):52. https://doi.org/10.3390/photonics9020052
Chicago/Turabian StyleJechow, Andreas. 2022. "Is Heralded Two-Photon Excited Fluorescence with Single Absorbers Possible with Current Technology?" Photonics 9, no. 2: 52. https://doi.org/10.3390/photonics9020052
APA StyleJechow, A. (2022). Is Heralded Two-Photon Excited Fluorescence with Single Absorbers Possible with Current Technology? Photonics, 9(2), 52. https://doi.org/10.3390/photonics9020052