High-Speed 600 GHz-Band Terahertz Imaging Scanner System with Enhanced Focal Depth
Abstract
:1. Introduction
2. Polygon Mirror for 600 GHz-Band Terahertz High-Speed Imaging
2.1. Approach for Achieving High Acquisition Speed
2.2. Configuration of the High-Speed THz Imaging System
2.3. Imaging Results with a Polygon Mirror
3. 600 GHz-Band Terahertz Imaging Scanner System with Enhanced Focal Depth
3.1. Approach for Achieving a Longer Focal Depth
3.2. Design of the Integrated OAP Mirror
3.3. Imaging Experiment with Integrated OAP Mirror
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mittleman, M.D. Twenty years of terahertz imaging. Opt. Exp. 2018, 26, 9417–9431. [Google Scholar] [CrossRef] [PubMed]
- Valušis, G.; Lisauskas, A.; Yuan, H.; Knap, W.; Roskos, H.G. Roadmap of Terahertz Imaging 2021. Sensors 2021, 21, 4092. [Google Scholar] [CrossRef] [PubMed]
- Gui, S.; Li, J.; Pi, Y. Security Imaging for Multi-Target Screening Based on Adaptive Scene Segmentation with Terahertz Radar. IEEE Sens. J. 2019, 19, 2675–2684. [Google Scholar] [CrossRef]
- Yi, L.; Nishida, Y.; Sagisaka, T.; Kaname, R.; Mizuno, R.; Fujita, M.; Nagatsuma, T. Towards practical terahertz imaging system with Compact continuous wave transceiver. J. Light. Technol. 2021, 39, 7850–7861. [Google Scholar] [CrossRef]
- Song, Q.; Zhao, Y.; Redo-Sanchez, A.; Zhang, C.; Liu, X. Fast continuous terahertz wave imaging system for security. Opt. Commun. 2009, 282, 2019–2022. [Google Scholar] [CrossRef]
- Jin, K.H.; Kim, Y.-G.; Cho, S.H.; Ye, J.C.; Yee, D.-S. High-speed terahertz reflection three-dimensional imaging for nondestructive evaluation. Opt. Exp. 2012, 20, 25432. [Google Scholar] [CrossRef] [PubMed]
- Rothbart, N.; Richter, H.; Wienold, M.; Schrottke, L.; Grahn, H.T.; Hubers, H.W. Fast 2-D and 3-D terahertz imaging with a quantumcascade laser and a scanning mirror. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 617–624. [Google Scholar] [CrossRef]
- Duma, V.-F.; Podoleanu, A.G. Polygon mirror scanners in biomedical imaging: A review. Opt. Compon. Mater. X 2013, 8621, 86210V1–86210V9. [Google Scholar]
- Ok, G.; Park, K.; Chun, H.S.; Chang, H.-J.; Lee, N.; Choi, S.W. High-performance sub-terahertz transmission imaging system for food inspection. Opt. Exp. 2015, 6, 1929. [Google Scholar] [CrossRef]
- Lee, E.S.; Kim, M.; Moon, K.; Lee, I.-M.; Park, D.W.; Shin, J.-H.; Kim, H.-S.; Choi, D.-H.; Choi, K.S.; Lee, D.H.; et al. High-Speed and cost-effective reflective terahertz imaging system using a novel 2D beam scanner. J. Light. Technol. 2020, 38, 4237–4243. [Google Scholar] [CrossRef]
- Hernandez-Serrano, A.I.; Pickwell-MacPherson, E. Low cost and long-focal-depth metallic axicon for terahertz frequencies based on parallel-plate-waveguides. Sci. Rep. 2021, 11, 3005. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Li, J.; Wang, W.; Hong, Z. Large focal depth of THz imaging system based on quasi-Bessel beams. Proc. SPIE 2010, 7854, 1–6. [Google Scholar]
- Jiang, X.Y.; Ye, J.S.; He, I.W. An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Opt. Exp. 2013, 21, 30030–30038. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhu, D.; Chen, Y.; Guo, Z.; Zuo, C.; Gao, Z. Comparative assessment of astigmatism-corrected Czerny-Turner imaging spectrometer using off-the-shelf optics. Opt. Commun. 2017, 388, 53–61. [Google Scholar] [CrossRef]
- Rong, L.; Latychevskaia, T.; Wang, D.; Zhou, X.; Huang, H.; Li, Z.; Wang, Y. Terahertz in-line digital holography of dragonfly hindwing: Amplitude and phase reconstruction at enhanced resolution by extrapolation. Opt. Exp. 2014, 22, 17236. [Google Scholar] [CrossRef] [PubMed]
- Damyanov, D.; Batra, A.; Friederich, B.; Kaiser, T.; Schultze, T.; Balzer, J.C. High-Resolution long-range THz imaging for tunable continuous wave systems. IEEE Access 2020, 8, 151997–152007. [Google Scholar] [CrossRef]
- Monserrat, O.; Crosetto, M.; Luzi, G. A review of ground-based SAR interferometry for deformation measurement. ISPRS J. Photogramm. Remote Sens. 2014, 93, 40–48. [Google Scholar] [CrossRef]
- Hosseininejad, S.E.; Rouhi, K.; Neshat, M.; Faraji-Dana, R.; Cabellos-Aparicio, A.; Abadal, S.; Alarcón, E. Reprogrammable Graphene-based metasurface mirror with adaptive focal point for THz imaging. Sci. Rep. 2019, 9, 2868. [Google Scholar] [CrossRef]
- Zolliker, P.; Hack, E. THz holography in reflection using a high resolution microbolometer array. Opt. Exp. 2015, 23, 10957. [Google Scholar] [CrossRef]
- Potsaid, B.; Bellouard, Y.; Wen, J. Adaptive scanning optical microscope (ASOM): A multidisciplinary optical microscope design for large field of view and high resolution imaging. Opt. Express 2005, 13, 6504–6518. [Google Scholar] [CrossRef]
- Wang, Y.; Kaname, R.; Yi, L.; Nagatsuma, T. High-speed 600-GHz-Band terahertz imaging system using polygon mirror. In Proceedings of the 2021 International Topical Meeting Microwave Photonics (MWP), Pisa, Italy, 15–17 November 2021; pp. 1–4. [Google Scholar]
- O’Haver, T. A pragmatic introduction to signal processing with applications in scientific measurement. Jurnal abb 2020, v, 302–303. [Google Scholar]
- Sagisaka, T.; Kaname, R.; Kikuchi, M.; Kukutsu, N.; Headland, D.; Yi, L.; Fujita, M.; Nagatsuma, T. Integrated terahertz optics with effective medium for 600-GHz-band imaging. In Proceedings of the 2020 International Topical Meeting Microwave Photonics (MWP), Matsue, Japan, 23–26 November 2020; pp. 62–65. [Google Scholar]
- Chen, T.A.; Tang, Y.; Zhang, L.J.; Chang, Y.E.; Zheng, C. Correction of astigmatism and coma using analytic theory of aberrations in imaging spectrometer based on concentric off-axis dual reflector system. Appl. Opt. 2014, 53, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Korsch, D. Anastigmatic three-mirror telescope. Appl. Opt. 1977, 16, 2074–2077. [Google Scholar] [CrossRef] [PubMed]
- Czerny, M.; Turner, A.F. On the Astigmatism of Mirror Spectrometers. Z. Phys. 1930, 61, 792–797. [Google Scholar] [CrossRef]
- Siegman, A.E. Lasers; University Science Books: Sausalito, CA, USA, 1986; pp. 664–669. [Google Scholar]
- Guo, Y.; Sun, L. Astigmatism calculation and its correction strategy in White type multipass cells. Light. Energy Environ. 2015, 5, 3. [Google Scholar]
- Austin, D.R.; Witting, T.; Walmsley, I.A. Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors. Appl. Opt. 2009, 48, 3846–3853. [Google Scholar] [CrossRef]
- Lee, J.U.; Yu, S.M. Analytic Design Procedure of Three-mirror Telescope Corrected for Spherical Aberration, Coma, Astigmatism, and Petzval Field Curvature. J. Opt. Soc. Korea 2009, 13, 184–192. [Google Scholar] [CrossRef]
- Wachulak, P.W.; Torrisi, A. Desk-top water window microscope using a double stream gas puff target source. Appl. Phys. B 2015, 118, 573–578. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, L.; Nagatsuma, T. 600-GHz-Band terahertz imaging scanner system with enhanced focal depth. In Proceedings of the 2021 International Topical Meeting Microwave Photonics (MWP), Nanjing, China, 4–6 October 2022; pp. 1–4. [Google Scholar]
- Suminokura, A.; Tsuruda, K.; Mukai, T.; Fujita, M.; Nagatsuma, T. Integration of resonant tunneling diode with Terahertz photonic-crystal waveguide and its application to gigabit terahertz-wave communications. In Proceedings of the 2014 International Topical Meeting Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP), Sapporo, Japan, 20–23 October 2014; pp. 419–422. [Google Scholar]
- Han, S.P.; Ko, H.; Park, J.-W.; Kim, N.; Yoon, Y.-J.; Shin, J.-H.; Kim, D.Y.; Lee, D.H.; Park, K.H. InGaAs schottky barrier diode array detector for a real time compact terahertz line scanner. Opt. Exp. 2013, 13, 25874. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yi, L.; Tonouchi, M.; Nagatsuma, T. High-Speed 600 GHz-Band Terahertz Imaging Scanner System with Enhanced Focal Depth. Photonics 2022, 9, 913. https://doi.org/10.3390/photonics9120913
Wang Y, Yi L, Tonouchi M, Nagatsuma T. High-Speed 600 GHz-Band Terahertz Imaging Scanner System with Enhanced Focal Depth. Photonics. 2022; 9(12):913. https://doi.org/10.3390/photonics9120913
Chicago/Turabian StyleWang, Yaheng, Li Yi, Masayoshi Tonouchi, and Tadao Nagatsuma. 2022. "High-Speed 600 GHz-Band Terahertz Imaging Scanner System with Enhanced Focal Depth" Photonics 9, no. 12: 913. https://doi.org/10.3390/photonics9120913
APA StyleWang, Y., Yi, L., Tonouchi, M., & Nagatsuma, T. (2022). High-Speed 600 GHz-Band Terahertz Imaging Scanner System with Enhanced Focal Depth. Photonics, 9(12), 913. https://doi.org/10.3390/photonics9120913