Tunable High-Q Factor Substrate for Selectively Enhanced Raman Scattering
Abstract
1. Introduction
2. Simulation Models
3. Simulation Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, M.; Oh, K.; Choi, H.K.; Lee, S.G.; Youn, H.J.; Lee, H.L.; Jeong, D.H. Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sens. 2018, 3, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, L.; Hu, C.; Liu, T.; Sun, S.; Liu, X.; Guan, M. Simultaneous quantitative detection of IL-6 and PCT using SERS magnetic immunoassay with sandwich structure. Nanotechnology 2021, 32, 255702. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Xie, X.J.; Xu, J.H.; Wu, Y.M.; Hong, M.H.; Liu, X.G. Plasmonic bimetallic nanodisk arrays for DNA conformation sensing. Nanoscale 2019, 11, 19291–19296. [Google Scholar] [CrossRef] [PubMed]
- Vráblová, M.; Koutník, I.; Smutná, K.; Marková, D.; Veverková, N. Combined SPRi sensor for simultaneous detection of nitrate and ammonium in wastewater. Sensors 2021, 21, 725. [Google Scholar] [CrossRef]
- Zuo, T.; Goldwyn, H.J.; Isaacoff, B.P.; Masiello, D.J.; Biteen, J.S. Rotation of single-molecule emission polarization by plasmonic nanorods. J. Phys. Chem. Lett. 2019, 10, 5047–5057. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.; León-Pérez, F.; Pelton, M.; Lee, I.H.; Oh, S.H. Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nat. Photonics 2021, 15, 125–130. [Google Scholar] [CrossRef]
- Chu, Y.; Banaee, M.G.; Crozier, K.B. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. ACS Nano 2010, 4, 2804–2810. [Google Scholar] [CrossRef]
- Galvan, D.D.; Špačková, B.; Slabý, J.; Sun, F.; Ho, Y.H.; Homola, J.; Yu, Q. Surface enhanced Raman scattering (SERS) on gold nanohole arrays in symmetrical dielectric environments exhibiting electric field extension. J. Phys. Chem. C 2016, 120, 25519–25529. [Google Scholar] [CrossRef]
- Yu, H.; Xian, Z.; Emilie, R.; Zhai, L.; Wang, X. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays. Nanoscale 2018, 10, 4267–4275. [Google Scholar]
- Qi, Z.Q.; Yao, J.; Zhao, L.L.; Cui, Y.P.; Lu, C.G. Tunable double-resonance dimer structure for surface-enhanced Raman scattering substrate in near-infrared region. Photonics Res. 2015, 3, 313. [Google Scholar] [CrossRef]
- Feng, K.; Chen, Z.Y.; Chen, Z.B.; Shen, J.X.; Li, H.L. Composite structure of Ag colloidal particles and Au sinusoidal nanograting with large-scale ultra-high field enhancement for SERS detection. Photonics 2021, 8, 415. [Google Scholar] [CrossRef]
- Banaee, M.G.; Crozier, K.B. Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy. ACS Nano 2011, 5, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Saikin, S.K.; Chu, Y.Z.; Rappoport, D.; Crozier, K.B.; Guzik, A. Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates. J. Phys. Chem. Lett. 2010, 1, 2740–2746. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Fan, C.; Liang, E.; Li, Y.; Ding, P. Unmodified hot spot in hybridized nanorod dimer for extended surface-enhanced Raman scattering. J. Phys. Chem. Solids 2020, 136, 109125. [Google Scholar] [CrossRef]
- Alam, K.; Kabusure, K.M.; Asamoah, B.O.; Nuutinen, T.; Baah, M.; Mohamed, S.; Matikainen, A.; Heikkinen, J.; Rekola, H.; Roussey, M.; et al. Double resonant plasmonic lattices for Raman studies. Nanoscale 2020, 12, 23166. [Google Scholar] [CrossRef]
- Shioi, M.; Jans, H.; Lodewijks, K.; Van Dorpe, P.; Lagae, L.; Kawamura, T. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications. Appl. Phys. Lett. 2014, 104, 243102. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.Y.; Mei, L.; Sun, J.; Jiang, R.B. Nanostructures composed of dual plasmonic materials exhibiting high thermal stability and SERS enhancement. Part. Part. Syst. Char. 2021, 38, 2000321. [Google Scholar] [CrossRef]
- Ye, Y.; Schletz, D.; Reif, J.; Winkler, F.; Kirchner, R. Influences on plasmon resonance linewidth in metal insulator metal structures obtained via colloidal self-assembly. ACS Appl. Mater. Inter. 2020, 12, 56281. [Google Scholar]
- Wei, W.; Yan, X.; Shen, B.; Zhang, X. Plasmon-induced transparency in an asymmetric bowtie structure. Nanoscale Res. Lett. 2019, 14, 246–253. [Google Scholar] [CrossRef]
- Zhou, H.; Jie, G.; Xu, K.; Zhe, L.; Tang, J.; Man, S. Bistable enhanced total reflection in Kretschmann configuration containing a saturable gain medium. Opt. Express 2018, 26, 5253. [Google Scholar] [CrossRef]
- Min, B.; Ostby, E.; Sorger, V.; Ulin-Avila, E.; Lan, Y.; Zhang, X.; Vahala, K. High-Q surface plasmon polariton whispering gallery microcavity. Nature 2009, 457, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Bandaru, P.R. Interaction and hybridization of orthogonal Fabry-Pérot like surface plasmon modes in metal-dielectric grating structures. Opt. Express 2020, 28, 3541. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhang, P.; Li, Q.; Zhang, Y.; Li, W. A perfect selective metamaterial absorber for high-temperature solar energy harvesting. Sol. Energy 2021, 230, 1165. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Lu, C.G.; Qi, Z.Q.; Hu, X.F.; Ni, Z.H.; Cui, Y.P. Selectively enhanced Raman scattering with triple-resonance nanohole arrays. Opt. Commun. 2019, 452, 494–498. [Google Scholar] [CrossRef]
- Anna, L.; Angela, D.; Lee, W.; Patrick, A.; Felix, B.; Rohit, C.; Javier, A.; Baumberg, J.J. Anomalous spectral shift of near- and far-field plasmonic resonance in nanogaps. ACS Photonics 2016, 3, 471–477. [Google Scholar]
- Kristensen, P.T.; Van Vlack, C.; Hughes, S. Generalized effective mode volume for leaky optical cavities. Opt. Lett. 2012, 37, 1649–1651. [Google Scholar] [CrossRef]
- Sonnefraud, Y.; Verellen, N.; Sobhani, H.; Vandenbosch, G.A.E.; Moshchalkov, V.V.; Van Dorpe, P.; Nordlander, P.; Maier, S.A. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 2010, 4, 1664–1670. [Google Scholar] [CrossRef]
- Du, M.Y.; Shen, Z. Enhanced and tunable double Fano resonances in plasmonic metasurfaces with nanoring dimers. J. Phys. D Appl. Phys. 2021, 54, 145106. [Google Scholar] [CrossRef]
λ/nm | Veff | Q | Q/Veff |
---|---|---|---|
766 | 1.55 × 10−4 | 58.46 | 3.77 × 105 |
858 | 1.46 × 10−4 | 70.83 | 4.85 × 105 |
932 | 0.94 × 10−4 | 51.44 | 5.47 × 105 |
Single bowtie | 3.34 × 10−4 | 6.80 | 2.03 × 104 |
Reference | Structure | GSERS | Q | Experimental Verification |
---|---|---|---|---|
[13] 2010 | Nanodisk array and Gold film | 2.5 × 106 | ~30 | Yes |
[12] 2011 | Mixed dimer array | 1.06 × 105 | ~10 | Yes |
[16] 2014 | Nanodisk array and Gold film | 7.80 × 107 | ~20 | Yes |
[25] 2019 | Nanohole array and Silver film | 4.36 × 107 | ~30 | Yes |
[29] 2021 | Nanoring dimer array cavity | 6.71 × 108 | ~10 | No |
Our structure | Bowtie hole array and Silver film | 5.39 × 108 | 70.8 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Z.; Li, J.; Chen, P.; Zhang, L.; Ji, K. Tunable High-Q Factor Substrate for Selectively Enhanced Raman Scattering. Photonics 2022, 9, 755. https://doi.org/10.3390/photonics9100755
Qi Z, Li J, Chen P, Zhang L, Ji K. Tunable High-Q Factor Substrate for Selectively Enhanced Raman Scattering. Photonics. 2022; 9(10):755. https://doi.org/10.3390/photonics9100755
Chicago/Turabian StyleQi, Zhengqing, Jinhuan Li, Peng Chen, Lingling Zhang, and Ke Ji. 2022. "Tunable High-Q Factor Substrate for Selectively Enhanced Raman Scattering" Photonics 9, no. 10: 755. https://doi.org/10.3390/photonics9100755
APA StyleQi, Z., Li, J., Chen, P., Zhang, L., & Ji, K. (2022). Tunable High-Q Factor Substrate for Selectively Enhanced Raman Scattering. Photonics, 9(10), 755. https://doi.org/10.3390/photonics9100755