Broadband, Continuous-Wave, Mid-Infrared Generation Based on ASE Fiber Source
Abstract
1. Introduction
2. Experimental Setup and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pang, X.; Schatz, R.; Joharifar, M.; Udalcovs, A.; Bobrovs, V.; Zhang, L.; Yu, X.; Sun, Y.-T.; Maisons, G.; Carras, M.; et al. Direct Modulation and Free-Space Transmissions of up to 6 Gbps Multilevel Signals With a 4.65 μm Quantum Cascade Laser at Room Temperature. J. Lightwave Technol. 2022, 40, 2370–2377. [Google Scholar] [CrossRef]
- Toor, F.; Jackson, S.; Shang, X.; Arafin, S.; Yang, H. Mid-Infrared Lasers for Medical Applications: Introduction to the Feature Issue. Biomed. Opt. Express 2018, 9, 6255. [Google Scholar] [CrossRef]
- Ren, T.; Wu, C.; Yu, Y.; Dai, T.; Chen, F.; Pan, Q. Development Progress of 3–5 μm Mid-Infrared Lasers: OPO, Solid-State and Fiber Laser. Appl. Sci. 2021, 11, 11451. [Google Scholar] [CrossRef]
- Abramov, P.I.; Kuznetsov, E.V.; Skvortsov, L.A. Prospects of Using Quantum-Cascade Lasers in Optoelectronic Countermeasure Systems: Review. J. Opt. Technol. 2017, 84, 331. [Google Scholar] [CrossRef]
- Hu, C.; Chen, T.; Jiang, P.; Wu, B.; Su, J.; Shen, Y. Broadband High-Power Mid-IR Femtosecond Pulse Generation from an Ytterbium-Doped Fiber Laser Pumped Optical Parametric Amplifier. Opt. Lett. 2015, 40, 5774. [Google Scholar] [CrossRef] [PubMed]
- Ycas, G.; Giorgetta, F.R.; Baumann, E.; Coddington, I.; Herman, D.; Diddams, S.A.; Newbury, N.R. High-Coherence Mid-Infrared Dual-Comb Spectroscopy Spanning 2.6 to 5.2 μm. Nat. Photon. 2018, 12, 202–208. [Google Scholar] [CrossRef]
- Wu, H.; Wang, W.; Li, Y.; Li, C.; Yao, J.; Wang, Z.; Liang, H. Difference-Frequency Generation of Random Fiber Lasers for Broadly Tunable Mid-Infrared Continuous-Wave Random Lasing Generation. J. Lightwave Technol. 2022, 40, 2965–2970. [Google Scholar] [CrossRef]
- Swiderski, J.; Michalska, M.; Grzes, P. Broadband and Top-Flat Mid-Infrared Supercontinuum Generation with 3.52 W Time-Averaged Power in a ZBLAN Fiber Directly Pumped by a 2 μm Mode-Locked Fiber Laser and Amplifier. Appl. Phys. B 2018, 124, 152. [Google Scholar] [CrossRef]
- Turner, E.J.; Evans, J.W.; Harris, T.R.; McDaniel, S.A. Double-Pass Co:CdTe Mid-Infrared Laser Amplifier. Opt. Mater. Express 2018, 8, 2948. [Google Scholar] [CrossRef]
- Lamard, L.; Balslev-Harder, D.; Peremans, A.; Petersen, J.C.; Lassen, M. Versatile Photoacoustic Spectrometer Based on a Mid-Infrared Pulsed Optical Parametric Oscillator. Appl. Opt. 2019, 58, 250. [Google Scholar] [CrossRef]
- Fjodorow, P.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Schulz, C.; Leonov, S.O.; Skasyrsky, Y.K. Room-Temperature Fe:ZnSe Laser Tunable in the Spectral Range of 3.7–5.3 μm Applied for Intracavity Absorption Spectroscopy of CO2 Isotopes, CO and N2O. Opt. Express 2021, 29, 12033. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska, A.; David, M.; Freitag, S.; Andrews, A.M.; Strasser, G.; Hinkov, B.; Schwaighofer, A.; Lendl, B. Broadband Laser-Based Mid-Infrared Spectroscopy Employing a Quantum Cascade Detector for Milk Protein Analysis. Sens. Actuators B Chem. 2022, 350, 130873. [Google Scholar] [CrossRef]
- Zuo, Z.; Gu, C.; Peng, D.; Zou, X.; Di, Y.; Zhou, L.; Luo, D.; Liu, Y.; Li, W. Broadband Mid-Infrared Molecular Spectroscopy Based on Passive Coherent Optical–Optical Modulated Frequency Combs. Photon. Res. 2021, 9, 1358. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Ju, Y. 91.1 kW, 5.3 ns Compact Mid-Infrared Optical Parametric Amplification Based on PPMgLN. Results Phys. 2019, 15, 102783. [Google Scholar] [CrossRef]
- Mirov, S.B.; Fedorov, V.V.; Martyshkin, D.; Moskalev, I.S.; Mirov, M.; Vasilyev, S. Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides. IEEE J. Select. Top. Quantum Electron. 2015, 21, 292–310. [Google Scholar] [CrossRef]
- Chen, K.; Liu, S.; Zhang, B.; Gong, Z.; Chen, Y.; Zhang, M.; Deng, H.; Guo, M.; Ma, F.; Zhu, F.; et al. Highly Sensitive Photoacoustic Multi-Gas Analyzer Combined with Mid-Infrared Broadband Source and near-Infrared Laser. Opt. Lasers Eng. 2020, 124, 105844. [Google Scholar] [CrossRef]
- Täschler, P.; Bertrand, M.; Schneider, B.; Singleton, M.; Jouy, P.; Kapsalidis, F.; Beck, M.; Faist, J. Femtosecond Pulses from a Mid-Infrared Quantum Cascade Laser. Nat. Photon. 2021, 15, 919–924. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Liu, J.; Song, Y.; Zhang, H. Recent Developments in Mid-Infrared Fiber Lasers: Status and Challenges. Opt. Laser Technol. 2020, 132, 106497. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, P.; Xu, F.; Zhou, X.; Tang, J.; Liu, Y.; Wang, G. Watt-Level Continuous-Wave Single-Frequency Mid-Infrared Optical Parametric Oscillator Based on MgO:PPLN at 3.68 μm. Appl. Sci. 2018, 8, 1345. [Google Scholar] [CrossRef]
- Xu, M.; Yu, F.; Hassan, M.R.A.; Knight, J.C. Continuous-Wave Mid-Infrared Gas Fiber Lasers. IEEE J. Select. Topics Quantum Electron. 2018, 24, 0902308. [Google Scholar] [CrossRef]
- Xi, C.; Wang, P.; Li, X.; Liu, Z. Highly Efficient Continuous-Wave Mid-Infrared Generation Based on Intracavity Difference Frequency Mixing. High Power Laser Sci. Eng. 2019, 7, e67. [Google Scholar] [CrossRef]
- Luo, H.-Y.; Wang, Y.-Z. Linearly Polarized Polarization-Maintaining Er3+-Doped Fluoride Fiber Laser in the Mid-Infrared. J. Electron. Sci. Technol. 2022, 20, 100147. [Google Scholar] [CrossRef]
- Das, R.; Kumar, S.C.; Samanta, G.K.; Ebrahim-Zadeh, M. Broadband, High-Power, Continuous-Wave, Mid-Infrared Source Using Extended Phase-Matching Bandwidth in MgO:PPLN. Opt. Lett. 2009, 34, 3836. [Google Scholar] [CrossRef]
- Storteboom, J.; Lee, C.J.; Nieuwenhuis, A.F.; Lindsay, I.D.; Boller, K.-J. Incoherently Pumped Continuous Wave Optical Parametric Oscillator Broadened by Non-Collinear Phasematching. Opt. Express 2011, 19, 21786. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Xu, J.; Wang, P.; Li, X.; Zhou, P.; Xu, X. Ultra-Stable High-Power Mid-Infrared Optical Parametric Oscillator Pumped by a Super-Fluorescent Fiber Source. Opt. Express 2016, 24, 21684. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cheng, X.; Li, X.; Xu, X.; Han, K.; Chen, J. Dual-Wavelength Mid-Infrared Generation Using Intracavity Stimulated Raman Scattering of PPLN. IEEE Photonics J. 2018, 10, 1504408. [Google Scholar] [CrossRef]
- Feng, J.; Cheng, X.; Li, X.; Wang, P.; Hua, W.; Han, K. Highly Efficient Mid-Infrared Generation from Low-Power Single-Frequency Fiber Laser Using Phase-Matched Intracavity Difference Frequency Mixing. Appl. Sci. 2020, 10, 7454. [Google Scholar] [CrossRef]
- Paul, O.; Quosig, A.; Bauer, T.; Nittmann, M.; Bartschke, J.; Anstett, G.; L’huillier, J.A. Temperature-Dependent Sellmeier Equation in the MIR for the Extraordinary Refractive Index of 5% MgO Doped Congruent LiNbO3. Appl. Phys. B 2006, 86, 111–115. [Google Scholar] [CrossRef]
- Yanagawa, T.; Kanbara, H.; Tadanaga, O.; Asobe, M.; Suzuki, H.; Yumoto, J. Broadband Difference Frequency Generation around Phase-Match Singularity. Appl. Phys. Lett. 2005, 86, 161106. [Google Scholar] [CrossRef]
Year | Authors | Generation Technique | Central Wavelength | Spectral FWHM | Mid-Infrared Output Parameter |
---|---|---|---|---|---|
2018 | Jiaqun Zhao et al. [19] | OPO | 3.68 μm | Narrow bandwidth | Mid-infrared laser power: 1.1 W Pump-idler conversion efficiency:11% |
2018 | Mengrong Xu et al. [20] | Gas fiber lasers | 3.1 μm | Narrow bandwidth | Mid-infrared laser power: 1.1 W Slope efficiency: 33% |
2019 | Cheng Xi et al. [21] | Nonlinear frequency conversion | 3.78 μm | Narrow bandwidth | Mid-infrared laser power: 3.43 W Pump-idler conversion efficiency:15% |
2022 | Hong Yu Luo et al. [22] | Er3+-doped fluoride fiber laser | 3.5 μm | Narrow bandwidth | Mid-infrared laser power: 307 mW Slope efficiency: 11.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Li, X.; Wang, P.; Hua, W.; Wang, Z.; Han, K. Broadband, Continuous-Wave, Mid-Infrared Generation Based on ASE Fiber Source. Photonics 2022, 9, 724. https://doi.org/10.3390/photonics9100724
Wang K, Li X, Wang P, Hua W, Wang Z, Han K. Broadband, Continuous-Wave, Mid-Infrared Generation Based on ASE Fiber Source. Photonics. 2022; 9(10):724. https://doi.org/10.3390/photonics9100724
Chicago/Turabian StyleWang, Kaifeng, Xiao Li, Peng Wang, Weihong Hua, Zefeng Wang, and Kai Han. 2022. "Broadband, Continuous-Wave, Mid-Infrared Generation Based on ASE Fiber Source" Photonics 9, no. 10: 724. https://doi.org/10.3390/photonics9100724
APA StyleWang, K., Li, X., Wang, P., Hua, W., Wang, Z., & Han, K. (2022). Broadband, Continuous-Wave, Mid-Infrared Generation Based on ASE Fiber Source. Photonics, 9(10), 724. https://doi.org/10.3390/photonics9100724