High-Q-Factor Tunable Silica-Based Microring Resonators
Abstract
1. Introduction
2. Structure and Design
3. Fabrication and Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mori, Y.; Honda, E.; Shiraki, R.; Suzuki, K.; Matsuura, H.; Kawashima, H.; Namiki, S.; Ikeda, K.; Sato, K.-I. Wavelength-division demultiplexing enhanced by silicon-photonic tunable filters in ultra-wideband optical-path networks. J. Lightwave Technol. 2020, 38, 1002–1009. [Google Scholar] [CrossRef]
- Dai, D. Highly sensitive digital optical sensor based on cascaded high-q ring-resonators. Opt. Express 2009, 17, 23817–23822. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Chen, S.-L.; Song, C.; Huang, T.; Guo, L.J. Ultrahigh q polymer microring resonators for biosensing applications. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Ye, Z.; Fülöp, A.; Helgason, Ó.B.; Andrekson, P.A.; Torres-Company, V. Low-loss high-q silicon-rich silicon nitride microresonators for kerr nonlinear optics. Opt. Lett. 2019, 44, 4. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Yu, M.; Ji, X.; Griffith, A.G.; Cardenas, J.; Gaeta, A.L.; Lipson, M. Low-loss silicon platform for broadband mid-infrared photonics. Optica 2017, 4, 707–712. [Google Scholar] [CrossRef]
- Gao, Y.; Lo, J.-C.; Lee, S.; Patel, R.; Zhu, L.; Nee, J.; Tsou, D.; Carney, R.; Sun, J. High-power, narrow-linewidth, miniaturized silicon photonic tunable laser with accurate frequency control. J. Lightwave Technol. 2020, 38, 265–271. [Google Scholar] [CrossRef]
- Zhang, L.; Jie, L.; Zhang, M.; Wang, Y.; Xie, Y.; Shi, Y.; Dai, D. Ultrahigh-q silicon racetrack resonators. Photonics Res. 2020, 8, 684. [Google Scholar] [CrossRef]
- Spencer, D.T.; Bauters, J.F.; Heck, M.J.R.; Bowers, J.E. Integrated waveguide coupled si3n4 resonators in the ultrahigh-q regime. Optica 2014, 1, 153–157. [Google Scholar] [CrossRef]
- Ji, X.; Barbosa, F.A.S.; Roberts, S.P.; Dutt, A.; Cardenas, J.; Okawachi, Y.; Bryant, A.; Gaeta, A.L.; Lipson, M. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 2017, 4, 619–624. [Google Scholar] [CrossRef]
- Puckett, M.W.; Liu, K.; Chauhan, N.; Zhao, Q.; Jin, N.; Cheng, H.; Wu, J.; Behunin, R.O.; Rakich, P.T.; Nelson, K.D.; et al. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth. Nat. Commun. 2021, 12, 934. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.M.; Tong, W.; Forrest, S.R. Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 2004, 16, 1343–1345. [Google Scholar] [CrossRef]
- Green, W.; Lee, R.; Derose, G.; Scherer, A.; Yariv, A. Hybrid ingaasp-inp mach-zehnder racetrack resonator for thermooptic switching and coupling control. Opt. Express 2005, 13, 1651–1659. [Google Scholar] [CrossRef]
- Ciminelli, C.; Dell’Olio, F.; Armenise, M.N.; Soares, F.M.; Passenberg, W. High performance inp ring resonator for new generation monolithically integrated optical gyroscopes. Opt. Express 2013, 21, 556–564. [Google Scholar] [CrossRef]
- Jin, L.; Wang, J.; Fu, X.; Yang, B.; Shi, Y.; Dai, D. High-q microring resonators with 2×2 angled multimode interference couplers. IEEE Photonics Technol. Lett. 2013, 25, 612–614. [Google Scholar] [CrossRef]
- Han, X.; Wang, L.; Wang, Y.; Zou, P.; Gu, Y.; Teng, J.; Wang, J.; Jian, X.; Morthier, G.; Zhao, M. Uv-soft imprinted tunable polymer waveguide ring resonator for microwave photonic filtering. J. Lightwave Technol. 2014, 32, 3924–3932. [Google Scholar] [CrossRef]
- Yin, Y.-X.; Yin, X.-J.; Zhang, X.-P.; Yan, G.-W.; Wang, Y.; Wu, Y.-D.; An, J.-M.; Wang, L.-L.; Zhang, D.-M. High-q-factor silica-based racetrack microring resonators. Photonics 2021, 8, 43. [Google Scholar] [CrossRef]
- Wang, L.; An, J.; Wu, Y.; Zhang, J.; Wang, Y.; Li, J.; Wang, H.; Zhang, X.; Pan, P.; Zhang, L.; et al. A compact and low-loss 1 × 8 optical power splitter using silica-based plc on quartz substrate. Opt. Commun. 2014, 312, 203–209. [Google Scholar] [CrossRef]
- Li, C.; An, J.; Zhang, J.; Wang, L.; Li, J.; Wang, Y.; Yin, X.; Wang, H.; Wu, Y. 4×20 ghz silica-based awg hybrid integrated receiver optical sub-assemblies. Chin. Opt. Lett. 2018, 16. [Google Scholar] [CrossRef]
- Liu, D.; Sun, S.; Yin, X.; Sun, B.; Sun, J.; Liu, Y.; Li, W.; Zhu, N.; Li, M. Large-capacity and low-loss integrated optical buffer. Opt. Express. 2019, 27, 11585–11593. [Google Scholar] [CrossRef]
- Lee, H.; Chen, T.; Li, J.; Yang, K.Y.; Jeon, S.; Painter, O.; Vahala, K.J. Chemically etched ultrahigh-q wedge-resonator on a silicon chip. Nat. Photonics 2012, 6, 369–373. [Google Scholar] [CrossRef]
- Wu, L.; Wang, H.; Yang, Q.; Ji, Q.X.; Shen, B.; Bao, C.; Gao, M.; Vahala, K. Greater than one billion q factor for on-chip microresonators. Opt. Lett. 2020, 45, 5129–5131. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Yang, Q.-F.; Yang, K.Y.; Suh, M.-G.; Vahala, K. Soliton frequency comb at microwave rates in a high-q silica microresonator. Optica 2015, 2, 1078–1085. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, H.; Wu, L.; Gao, M.; Vahala, K. Linewidth enhancement factor in a microcavity brillouin laser. Optica 2020, 7, 1150. [Google Scholar] [CrossRef]
- Perentos, A.; Cuesta-Soto, F.; Rodrigo, M.; Canciamilla, A.; Vidal, B.; Pierno, L.; Griol, A.; Losilla, N.S.; Bellieres, L.; Lopez-Royo, F.; et al. Variable carrier reduction in radio-over-fiber systems for increased modulation efficiency using a si3n4 tunable extinction ratio ring resonator. Opt. Express 2012, 20, 25478–25488. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huang, M.; Li, S.; Xue, M.; Zhao, L.; Pan, S. Flat-top optical resonance in a single-ring resonator based on manipulation of fast- and slow-light effects. Opt. Express 2018, 26, 23215–23220. [Google Scholar] [CrossRef]
- Ma, C.-S.; Xu, Y.-Z.; Yan, X.; Qin, Z.-K.; Wang, X.-Y. Optimization and analysis of series-coupled microring resonator arrays. Opt. Commun. 2006, 262, 41–46. [Google Scholar] [CrossRef]
- Rabus, D.G. Integrated Ring Resonators; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ren, M.-Z.; Zhang, J.-S.; An, J.-M.; Wang, Y.; Wang, L.-L.; Li, J.-G.; Wu, Y.-D.; Yin, X.; Hu, X.-W. Low power consumption 4-channel variable optical attenuator array based on planar lightwave circuit technique. Chin. Phys. B 2017, 26, 74221. [Google Scholar] [CrossRef]
- Zhang, B.; Al Qubaisi, K.; Cherchi, M.; Harjanne, M.; Ehrlichman, Y.; Khilo, A.N.; Popovic, M.A. Compact multi-million q resonators and 100 mhz passband filter bank in a thick-soi photonics platform. Opt. Lett. 2020, 45, 3005–3008. [Google Scholar] [CrossRef]
Ref. | Platform | R (μm) | FSR (pm) | ER (dB) | Q Factor |
---|---|---|---|---|---|
[11] | InP-based PLC | 200 | 250 | 10 | 2.2 × 104 |
[12] | InP-based PLC | 50 | N.A. | 18.5 | N.A. |
[13] | InP-based PLC | 1300 | 17.8 | 7.0 | 0.97 × 106 |
[15] | Polymer-based PLC | 500 | 130 | 18 | 8.2 × 104 |
[7] | SOI | 29 | 900 | 4 | 1.3 × 106 |
[29] | SOI | 2600 | 5.1 GHz | 8 | 7.5 × 107 |
[9] | SiN | 115 | N.A. | N.A. | 3.7 × 107 |
[10] | SiN | 11,787 | 2.713 GHz | N.A. | 4.22 × 108 |
[16] | Silica-based PLC | 1600 | 137 | 3 | 1.83 × 106 |
This Work | Silica-based PLC | 1600 | 64 | 13.84 | 4.47 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.-X.; Zhang, X.-P.; Yin, X.-J.; Li, Y.; Xu, X.-R.; An, J.-M.; Wu, Y.-D.; Liu, X.-P.; Zhang, D.-M. High-Q-Factor Tunable Silica-Based Microring Resonators. Photonics 2021, 8, 256. https://doi.org/10.3390/photonics8070256
Yin Y-X, Zhang X-P, Yin X-J, Li Y, Xu X-R, An J-M, Wu Y-D, Liu X-P, Zhang D-M. High-Q-Factor Tunable Silica-Based Microring Resonators. Photonics. 2021; 8(7):256. https://doi.org/10.3390/photonics8070256
Chicago/Turabian StyleYin, Yue-Xin, Xiao-Pei Zhang, Xiao-Jie Yin, Yue Li, Xin-Ru Xu, Jun-Ming An, Yuan-Da Wu, Xiao-Ping Liu, and Da-Ming Zhang. 2021. "High-Q-Factor Tunable Silica-Based Microring Resonators" Photonics 8, no. 7: 256. https://doi.org/10.3390/photonics8070256
APA StyleYin, Y.-X., Zhang, X.-P., Yin, X.-J., Li, Y., Xu, X.-R., An, J.-M., Wu, Y.-D., Liu, X.-P., & Zhang, D.-M. (2021). High-Q-Factor Tunable Silica-Based Microring Resonators. Photonics, 8(7), 256. https://doi.org/10.3390/photonics8070256