Key Distribution Scheme for Optical Fiber Channel Based on SNR Feature Measurement
Abstract
:1. Introduction
2. Key Generation Scheme for Optical Fiber Communication
2.1. Channel Model
2.2. Channel Model
2.3. Key Evaluation Index
2.4. Key Generation Process
3. Key Distribution Simulation Platform Setup
4. Analysis of Simulation Results
4.1. Random Analysis
4.2. Consistency Analysis
4.3. Security Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef]
- Katz, J.; Lindell, Y. Introduction to Modern Cryptography; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Shor, P. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Patra, B.; Incandela, R.M.; Van Dijk, J.P.G.; Homulle, H.A.R.; Song, L.; Shahmohammadi, M.; Staszewski, R.B.; Vladimirescu, A.; Babaie, M.; Sebastiano, F.; et al. Cryo-CMOS Circuits and Systems for Quantum Computing Applications. IEEE J. Solid-State Circuits 2017, 53, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.-K.; Curty, M.; Tamaki, K. Secure quantum key distribution. Nat. Photon. 2014, 8, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Korzh, B.; Lim, C.C.W.; Houlmann, R.; Gisin, N.; Li, M.J.; Nolan, D.A.; Sanguinetti, B.; Thew, R.; Zbinden, H. Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photon. 2015, 9, 163–168. [Google Scholar] [CrossRef]
- Lucamarini, M.; Yuan, Z.L.; Dynes, J.F.; Shields, A.J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nat. Cell Biol. 2018, 557, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.-Y. Quantum Key Distribution with High Loss: Toward Global Secure Communication. Phys. Rev. Lett. 2003, 91, 057901. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Duong, T.Q.; Marshall, A.; Woods, R. Key Generation from Wireless Channels: A Review. IEEE Access 2016, 4, 614–626. [Google Scholar] [CrossRef] [Green Version]
- Bottarelli, M.; Epiphaniou, G.; Ben Ismail, D.K.; Karadimas, P.; Al-Khateeb, H. Physical characteristics of wireless communication channels for secret key establishment: A survey of the research. Comput. Secur. 2018, 78, 454–476. [Google Scholar] [CrossRef] [Green Version]
- Premnath, S.N.; Jana, S.; Croft, J.; Gowda, P.L.; Clark, M.; Kasera, S.K.; Patwari, N.; Krishnamurthy, S. Secret Key Extraction from Wireless Signal Strength in Real Environments. IEEE Trans. Mob. Comput. 2013, 12, 917–930. [Google Scholar] [CrossRef]
- Liu, Y.; Draper, S.C.; Sayeed, A.M. Exploiting Channel Diversity in Secret Key Generation from Multipath Fading Randomness. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1484–1497. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Kakesu, I.; Mitsui, Y.; Rontani, D.; Uchida, A.; Sunada, S.; Yoshimura, K.; Inubushi, M. Common-signal-induced synchronization in photonic integrated circuits and its appli-cation to secure key distribution. Opt. Express 2017, 25, 26029–26044. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Cheng, M.; Luo, C.; Deng, L.; Zhang, M.; Fu, S.; Tang, M.; Shum, P.; Liu, D. Semiconductor-laser-based hybrid chaos source and its application in secure key distribution. Opt. Lett. 2019, 44, 2605–2608. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hajomer, A.A.E.; Yang, X.; Hu, W. Error-free secure key generation and distribution using dynamic Stokes parameters. Opt. Express 2019, 27, 29207–29216. [Google Scholar] [CrossRef]
- Hajomer, A.A.E.; Zhang, L.; Yang, X.; Hu, W. Accelerated key generation and distribution using polarization scrambling in optical fiber. Opt. Express 2019, 27, 35761–35773. [Google Scholar] [CrossRef]
- Hajomer, A.A.E.; Zhang, L.; Yang, X.; Hu, W. Post-Processing Protocol for Physical-Layer Key Generation and Distribution in Fiber Networks. IEEE Photon. Technol. Lett. 2020, 32, 901–904. [Google Scholar] [CrossRef]
- Zaman, I.U.; Lopez, A.B.; Al Faruque, M.A.; Boyraz, O. Physical Layer Cryptographic Key Generation by Exploiting PMD of an Optical Fiber Link. J. Light. Technol. 2018, 36, 5903–5911. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Ma, P.Y.; Blow, E.C.; Mittal, P.; Prucnal, P.R. Accelerated secure key distribution based on localized and asymmetric fiber interfer-ometers. Opt. Express 2019, 27, 32096–32110. [Google Scholar] [CrossRef] [PubMed]
- Kravtsov, K.; Wang, Z.; Trappe, W.; Prucnal, P.R. Physical layer secret key generation for fiber-optical networks. Opt. Express 2013, 21, 23756–23771. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, J.; Li, Y.; Zhao, Y.; Yang, X. Secure Key Distribution System Based on Optical Channel Physical Features. IEEE Photon. J. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Lei, C.; Zhang, J.; Li, Y.; Zhao, Y.; Wang, B.; Gao, H.; Li, J.; Zhang, M. Long-haul and High-speed Key Distribution Based on One-way Non-dual Arbitrary Basis Transformation in Optical Fiber Link. In Proceedings of the Optical Fiber Communication Conference and Exhibition(OFC), San Diego, CA, USA, 8–12 March 2020; p. W2A.51. [Google Scholar]
- Maurer, U.M. Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 1993, 39, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, J.; Li, Y.; Gao, G.; Zhao, Y.; Zhang, H. Single-carrier QAM/QNSC and PSK/QNSC transmission systems with bit-resolution limited DACs. Opt. Commun. 2019, 445, 29–35. [Google Scholar] [CrossRef]
- Fratalocchi, A.; Fleming, A.; Conti, C.; Di Falco, A. NIST-certified secure key generation via deep learning of physical unclonable functions in silica aerogels. Nanophotonics 2020, 10, 457–464. [Google Scholar] [CrossRef]
Equipment | Parameter Configuration |
---|---|
AWG | Transmitting Rate: 10 Gb/s |
Light source | Wavelength: 1550 nm |
EDFA | Launch Power: 1 mW |
Ultra-low loss fiber | Power: 12 dBm |
OSC | 200 km, 0.2 dBm/km |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, J.; Wang, B.; Zhu, K.; Song, H.; Li, R.; Zhang, F. Key Distribution Scheme for Optical Fiber Channel Based on SNR Feature Measurement. Photonics 2021, 8, 208. https://doi.org/10.3390/photonics8060208
Wang X, Zhang J, Wang B, Zhu K, Song H, Li R, Zhang F. Key Distribution Scheme for Optical Fiber Channel Based on SNR Feature Measurement. Photonics. 2021; 8(6):208. https://doi.org/10.3390/photonics8060208
Chicago/Turabian StyleWang, Xiangqing, Jie Zhang, Bo Wang, Kongni Zhu, Haokun Song, Ruixia Li, and Fenghui Zhang. 2021. "Key Distribution Scheme for Optical Fiber Channel Based on SNR Feature Measurement" Photonics 8, no. 6: 208. https://doi.org/10.3390/photonics8060208
APA StyleWang, X., Zhang, J., Wang, B., Zhu, K., Song, H., Li, R., & Zhang, F. (2021). Key Distribution Scheme for Optical Fiber Channel Based on SNR Feature Measurement. Photonics, 8(6), 208. https://doi.org/10.3390/photonics8060208