Digital Image Processing and Development of Machine Learning Models for the Discrimination of Corneal Pathology: An Experimental Model
Abstract
:1. Introduction
2. Materials and Methods
- Traditional machine learning, including RF and SVM.
- Deep learning using end-to-end CNN.
- TL using the pre-trained model (e.g., AlexNet) [34].
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaqoob, Z.; Wu, J.; Yang, C. Spectral domain optical coherence tomography: A better oct imaging strategy. Biotechniques 2005, 39, S6–S13. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.S.; Song, W.; Choi, E.S. Spectral domain optical coherence tomography imaging performance improvement based on field curvature aberration-corrected spectrometer. Appl. Sci. 2020, 10, 3657. [Google Scholar] [CrossRef]
- Riaz, H.; Park, J.; Choi, H.; Kim, H.; Kim, J. Deep and densely connected networks for classification of diabetic retinopathy. Diagnostics 2020, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Chaddad, A.; Kucharczyk, M.J.; Cheddad, A.; Clarke, S.E.; Hassan, L.; Ding, S.; Rathore, S.; Zhang, M.; Katib, Y.; Bahoric, B.; et al. Magnetic resonance imaging based radiomic models of prostate cancer: A narrative review. Cancers 2021, 13, 552. [Google Scholar] [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Cheung, C.Y.-L.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; San Yeo, I.Y.; Lee, S.Y.; et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017, 318, 2211–2223. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Baughman, D.M.; Lee, A.Y. Deep learning is effective for the classification of OCT images of normal versus age-related macular degeneration. Ophthalmol. Retin. 2017, 1, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Burlina, P.M.; Joshi, N.; Pekala, M.; Pacheco, K.D.; Freund, D.E.; Bressler, N.M. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017, 135, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Aslam, T.M.; Zaki, H.R.; Mahmood, S.; Ali, Z.C.; Ahmad, N.A.; Thorell, M.R.; Balaskas, K. Use of a neural net to model the impact of optical coherence tomography abnormalities on vision in age-related macular degeneration. Am. J. Ophthalmol. 2018, 185, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassmann, F.; Mengelkamp, J.; Brandl, C.; Harsch, S.; Zimmermann, M.E.; Linkohr, B.; Peters, A.; Heid, I.M.; Palm, C.; Weber, B.H.F. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 2018, 125, 1410–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghavendra, U.; Fujita, H.; Bhandary, S.V.; Gudigar, A.; Tan, J.H.; Acharya, U.R. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf. Sci. 2018, 441, 41–49. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; Keel, S.; Meng, W.; Chang, R.T.; He, M. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 2018, 125, 1199–1206. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, S.; Kiwaki, T.; Zheng, Y.; Sugiura, H.; Asaoka, R.; Murata, H.; Lemij, H.; Yamanishi, K. Detection of longitudinal visual field progression in glaucoma using machine learning. Am. J. Ophthalmol. 2018, 193, 71–79. [Google Scholar] [CrossRef]
- Ambrósio, R.; Lopes, B.T.; Faria-Correia, F.; Salomão, M.Q.; Bühren, J.; Roberts, C.J.; Elsheikh, A.; Vinciguerra, R.; Vinciguerra, P. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J. Refract. Surg. 2017, 33, 434–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidalgo, I.R.; Rodriguez, P.; Rozema, J.J.; Dhubhghaill, S.N.; Zakaria, N.; Tassignon, M.J.; Koppen, C. Evaluation of a machine-learning classifier for keratoconus detection based on Scheimpflug tomography. Cornea 2016, 35, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Lopes, B.T.; Ramos, I.C.; Salomão, M.Q.; Guerra, F.P.; Schallhorn, S.C.; Schallhorn, J.M.; Vinciguerra, R.; Vinciguerra, P.; Price, F.W.; Price, M.O.; et al. Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence. Am. J. Ophthalmol. 2018, 195, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.S.; Perez-Straziota, C.E.; Kim, S.W.; Santhiago, M.R.; Randleman, J.B. Distinguishing highly asymmetric keratoconus eyes using combined scheimpflug and spectral-domain OCT analysis. Ophthalmology 2018, 125, 1862–1871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zéboulon, P.; Ghazal, W.; Gatinel, D. Corneal edema visualization with optical coherence tomography using deep learning. Cornea 2020, in press. [Google Scholar] [CrossRef]
- Eleiwa, T.; Elsawy, A.; Özcan, E.; Abou Shousha, M. Automated diagnosis and staging of fuchs’ endothelial cell corneal dystrophy using deep learning. Eye Vis. 2020, 7, 44. [Google Scholar] [CrossRef]
- Meinshausen, N. Quantile regression forests. J. Mach. Learn. Res. 2006, 7, 983–999. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Haffner, P.; Bottou, L.; Bengio, Y. Object Recognition with gradient-based learning. In Shape, Contour and Grouping in Computer Vision; Forsyth, D.A., Mundy, J.L., Gesú, V., Cipolla, R., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1999; pp. 319–345. [Google Scholar]
- Freund, Y.; Schapire, R. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Ayodele, T.O. Types of machine learning algorithms. In New Advances in Machine Learning; Zhang, Y., Ed.; InTech: Rijeka, Croatia, 2010. [Google Scholar]
- Lu, W.; Tong, Y.; Yu, Y.; Xing, Y.; Chen, C.; Shen, Y. Applications of artificial intelligence in ophthalmology: General overview. J. Ophthalmol. 2018, 2018, 5278196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segal, M.R. Machine learning benchmarks and random forest regression. In UCSF: Center for Bioinformatics and Molecular Biostatistics; eScholarship Publishing, University of Califormia at San Franciso, 2004; Available online: https://escholarship.org/uc/item/35x3v9t4 (accessed on 9 February 2019).
- Schölkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambdrige, MA, USA, 2002. [Google Scholar]
- Ting, D.S.W.; Pasquale, L.R.; Peng, L.; Campbell, J.P.; Lee, A.Y.; Raman, R.; Tan, G.S.W.; Schmetterer, L.; Keane, P.A.; Wong, T.Y. Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 2019, 103, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, M.A.; Ravi, S.; Vaishnavi, J.; Punitha, S. Classification of cervical cancer using artificial neural networks. Procedia. Comput. Sci. 2016, 89, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Hahn, P.; Migacz, J.; O’Connell, R.; Maldonado, R.S.; Izatt, J.A.; Toth, C.A. The use of optical coherence tomography in intraoperative ophthalmic imaging. Ophthalmic Surg. Lasers Imaging 2011, 42, S85–S94. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Duker, J.S.; Fujimoto, J.G.; Lumbroso, B.; Schuman, J.S.; Weinred, R.N. Imaging the Eye from Front to Back with RTVue Fourier-Domain Optical Coherence Tomography, 1st ed.; Huang, D., Duker, J.S., Fujimoto, J.G., Lumbroso, B., Eds.; Slack Incorporated: San Francisco, CA, USA, 2010. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 2012 Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Cheddad, A.; Condell, J.; Curran, K.; Mc Kevitt, P.; Kevitt, P.M. On points geometry for fast digital image segmentation. In Proceedings of the 8th International Conference on Information Technology and Telecommunication; Galway Mayo Institute of Technology, Galway, Ireland, 24 October 2008; pp. 54–61. [Google Scholar]
- Cheddad, A.; Mohamad, D.; Manaf, A.A. Exploiting voronoi diagram properties in face segmentation and feature extraction. Pattern Recognit. 2008, 41, 3842–3859. [Google Scholar] [CrossRef]
- Lloyd, S.P. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Nixon, M.S.; Aguado Gonzalez, A.S. Feature Extraction & Image Processing for Computer Vision, 4th ed.; Academic Press: London, UK, 2020. [Google Scholar]
- Lekamlage, C.D.; Afzal, F.; Westerberg, E.; Cheddad, A. Mini-DDSM: Mammography-based automatic age estimation. In Proceedings of the 3rd International Conference on Digital Medicine and Image Processing (DMIP 2020), ACM, Kyoto, Japan, 6–9 November 2020. [Google Scholar]
- Banerjee, I.; Ling, Y.; Chen, M.C.; Hasan, S.A.; Langlotz, C.P.; Moradzadeh, N.; Chapman, B.; Amrhein, T.; Mong, D.; Rubin, D.L.; et al. Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Artif. Intell. Med. 2019, 97, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Cheddad, A. On box-cox transformation for image normality and pattern classification. IEEE Access 2020, 8, 154975–154983. [Google Scholar] [CrossRef]
- Lopes, B.T.; Eliasy, A.; Ambrosio, R. Artificial intelligence in corneal diagnosis: Where are we? Curr. Ophthalmol. Rep. 2019, 7, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Kolluru, C.; Benetz, B.; Joseph, N.; Lass, J.; Wilson, D.; Menegay, H. Machine learning for segmenting cells in corneal endothelium images. In Proceedings of the SPIE, San Diego, CA, USA, 13 March 2019; Volume 10950, p. 109504G. [Google Scholar] [CrossRef]
- Treder, M.; Lauermann, J.L.; Alnawaiseh, M.; Eter, N. Using deep learning in automated detection of graft detachment in descemet membrane endothelial keratoplasty: A pilot study. Cornea 2019, 38, 157–161. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, V.A.; Schmetterer, L.; Stegmann, H.; Pfister, M.; Messner, A.; Schmidinger, G.; Garhofer, G.; Werkmeister, R.M. CorneaNet: Fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed. Opt. Express 2019, 10, 622. [Google Scholar] [CrossRef]
- Livingstone, D.J.; Manallack, D.T.; Tetko, I.V. Data modelling with neural networks: Advantages and limitations. J. Comput. Aided. Mol. Des. 1997, 11, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.K.; Cheddad, A.; Andersson, P. Random forest surrogate models to support design space exploration in aerospace use-case. In IFIP Advances in Information and Communication Technology, Proceedings of the International Conference Artificial Intelligence Applications and Innovations (AIAI’19), Hersonissos, Greece, 24–26 May 2019; MacIntyre, J., Maglogiannis, I., Iliadis, L., Pimenidis, E., Eds.; Springer: Crete, Greece, 2019; pp. 532–544. [Google Scholar]
- Cheddad, A.; Czene, K.; Eriksson, M.; Li, J.; Easton, D.; Hall, P.; Humphreys, K. Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer. PLoS ONE 2014, 9, e110690. [Google Scholar] [CrossRef] [Green Version]
- Cheddad, A.; Czene, K.; Shepherd, J.A.; Li, J.; Hall, P.; Humphreys, K. Enhancement of mammographic density measures in breast cancer risk prediction. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1314–1323. [Google Scholar] [CrossRef] [Green Version]
- Balyen, L.; Peto, T. Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia Pac. J. Ophthalmol. 2019, 8, 264–272. [Google Scholar] [CrossRef]
- Kamiya, K.; Ayatsuka, Y.; Kato, Y.; Fujimura, F.; Takahashi, M.; Shoji, N.; Mori, Y.; Miyata, K. Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: A diagnostic accuracy study. BMJ Open 2019, 9, e031313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, C.; Wang, M.; Zhu, T.; Zhang, Y.; Ye, Y.; Jiang, J.; Chen, S.; Lu, F.; Shen, M. Machine learning helps improve diagnostic ability of subclinical keratoconus using Scheimpflug and OCT imaging modalities. Eye Vis. 2020, 7, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Takahashi, H.; Hayashi, T.; Tampo, H.; Inoda, S.; Arai, Y.; Tabuchi, H.; Asbell, P. Predicting the likelihood of need for future keratoplasty intervention using artificial intelligence. Ocul. Surf. 2020, 18, 320–325. [Google Scholar] [CrossRef] [PubMed]
Column | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature # | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | #12 | #13 | #14 | #15 | #16 | |
Feature/ Patient | Mean Cornea | Mean Cornea Absorbance | Std Cornea | Std Cornea Absorbance | B/D | C/E | meanroi | meanROIAbsorbance | stdROI | Std ROIAbsorbance | H/J | I/K | H/B | J/D | I/C | K/E | Label |
1 | 81.61 | 1.63 | 48.85 | 0.62 | 1.67 | 2.62 | 184.69 | 2.57 | 30.57 | 0.16 | 6.04 | 15.97 | 2.26 | 0.63 | 1.57 | 0.26 | Healthy |
2 | 74.05 | 1.16 | 48.49 | 0.54 | 1.53 | 2.15 | 177.47 | 2.02 | 29.57 | 0.17 | 6.00 | 12.04 | 2.40 | 0.61 | 1.74 | 0.31 | Healthy |
3 | 90.31 | 2.14 | 57.15 | 0.71 | 1.58 | 2.99 | 201.04 | 3.15 | 14.62 | 0.07 | 13.75 | 43.97 | 2.23 | 0.26 | 1.47 | 0.10 | Pathologic |
4 | 69.85 | 1.47 | 42.50 | 0.61 | 1.64 | 2.41 | 157.58 | 2.36 | 20.64 | 0.13 | 7.64 | 18.44 | 2.26 | 0.49 | 1.61 | 0.21 | Healthy |
5 | 107.03 | 3.38 | 51.73 | 0.62 | 2.07 | 5.45 | 206.95 | 4.18 | 20.40 | 0.10 | 10.14 | 43.21 | 1.93 | 0.39 | 1.24 | 0.16 | Pathologic |
Healthy | Pathologic | |
---|---|---|
Train data set | 50 (77%) | 15 (23%) |
Test data set | 21 (75%) | 7 (25%) |
Sum | 71 (76%) | 22 (24%) |
Method | # of Features | Accuracy (%) | Specificity | Sensitivity (Recall) | PPV | NPV | Youden Index | AUC ** |
---|---|---|---|---|---|---|---|---|
RF | 16 | 86.07 ± 5.44 | 0.60 ± 0.20 | 0.95 ± 0.05 | 0.88 ± 0.05 | 0.83 ± 0.16 | 0.55 ± 0.19 | 0.77 ± 0.10 |
CNN | - | 86.79 ± 6.95 | 0.77 ± 0.16 | 0.91 ± 0.04 | 0.92 ± 0.06 | 0.71 ± 0.13 | 0.67 ± 0.19 | 0.84 ± 0.10 |
TL-SVM | 4096 | 97.14 ± 2.82 | 0.88 ± 0.12 | 1.00 | 0.96 ± 0.04 | 1.00 | 0.88 ± 0.12 | 0.94 ± 0.06 |
TL-RF | 4096 | 96.07 ± 4.89 | 0.84 ± 0.18 | 1.00 | 0.95 ± 0.05 | 1.00 | 0.84 ± 0.18 | 0.92 ± 0.09 |
Author | Year | Pathology Analyzed | ML Classifier | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Santos et al. | 2019 | Keratoconic corneas | CNN | 99.5% | N.A. | N.A. |
Kamiya et al. | 2019 | Keratoconic corneas | CNN | 99.1% | 100% | 98.4% |
Shi et al. | 2019 | Subclinical keratoconus | CNN | 93.0% | 95.3% | 94.5% |
Treder et al. | 2019 | DMEK graft detachment | Deep CNN | 94% | 98% | 94% |
Zéboulon et al. | 2020 | Corneal edema | CNN | 98.7% | 96.4% | 100% |
Eleiwa et al. | 2020 | FECD | Deep learning model | N.A. | 98% | 99% |
Yousefi et al. | 2020 | Future keratoplasty intervention | Density-based clustering | N.A. | N.A. | N.A. |
Bustamante et al. | 2021 | Different corneal pathologies | TL-SVM TL-RF | 97.1% 96.0% | 100% 100% | 88.1% 84.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante-Arias, A.; Cheddad, A.; Jimenez-Perez, J.C.; Rodriguez-Garcia, A. Digital Image Processing and Development of Machine Learning Models for the Discrimination of Corneal Pathology: An Experimental Model. Photonics 2021, 8, 118. https://doi.org/10.3390/photonics8040118
Bustamante-Arias A, Cheddad A, Jimenez-Perez JC, Rodriguez-Garcia A. Digital Image Processing and Development of Machine Learning Models for the Discrimination of Corneal Pathology: An Experimental Model. Photonics. 2021; 8(4):118. https://doi.org/10.3390/photonics8040118
Chicago/Turabian StyleBustamante-Arias, Andres, Abbas Cheddad, Julio Cesar Jimenez-Perez, and Alejandro Rodriguez-Garcia. 2021. "Digital Image Processing and Development of Machine Learning Models for the Discrimination of Corneal Pathology: An Experimental Model" Photonics 8, no. 4: 118. https://doi.org/10.3390/photonics8040118
APA StyleBustamante-Arias, A., Cheddad, A., Jimenez-Perez, J. C., & Rodriguez-Garcia, A. (2021). Digital Image Processing and Development of Machine Learning Models for the Discrimination of Corneal Pathology: An Experimental Model. Photonics, 8(4), 118. https://doi.org/10.3390/photonics8040118