Gamma-ray Spectroscopy Using Inorganic Scintillator Coated with Reduced Graphene Oxide in Fiber-Optic Radiation Sensor
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, Y.J.; Song, B.C.; Chowdhury, M.I.; Lee, K.Y. A neutron induced prompt gamma-ray spectroscopy system using a 252Cf neutron source for quantitative analysis of aqueous samples. J. Radioanal. Nucl. Chem. 2004, 260, 585–594. [Google Scholar] [CrossRef]
- Kim, R.; Lee, S.B.; Kim, J.W.; Moon, J.H. Development and comparison of fiber-optic beta radiation sensors with different diameters of their sensing probes. J. Sens. 2017, 2017, 1452765. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.B.; Shin, S.H.; Song, S.W.; Kim, H.J.; Cho, S.; Lee, B. Feasibility study on remote gamma spectroscopy system with fiberoptic radiation sensor. J. Radioanal. Nucl. Chem. 2018, 316, 1301–1306. [Google Scholar] [CrossRef]
- Kim, D.; Yu, D.; Sawant, A.; Choe, M.S.; Lee, I.; Kim, S.G.; Choi, E.M. Remote detection of radioactive material using high-power pulsed electromagnetic radiation. Nat. Commun. 2017, 8, 15394. [Google Scholar] [CrossRef] [Green Version]
- Yoo, W.J.; Shin, S.H.; Lee, D.E.; Jang, K.W.; Cho, S.; Lee, B. Development of a Small-Sized, Flexible, and Insertable Fiber-Optic Radiation Sensor for Gamma-Ray Spectroscopy. Sensors 2015, 15, 21265–21279. [Google Scholar] [CrossRef] [Green Version]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Santos, G.; Stauber, T. Fluorescence quenching in graphene: A fundamental ruler and evidence for transverse plasmons. Phys. Rev. Lett. B 2011, 84, 165438. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Dawlaty, J.M.; Shivaraman, S.; Strait, J.; George, P.; Chandrashekhar, M.; Rana, F.; Spencer, M.G.; Veksler, D.; Chen, Y. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 2008, 93, 131905. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Y.; Pu, N.W.; Liu, Y.M.; Huang, S.Y.; Wu, C.H.; Ger, M.D.; Gong, Y.J.; Chou, Y.C. Remarkable microwave absorption performance of graphene at a very low loading ratio. Compos. B Eng. 2017, 114, 395–403. [Google Scholar] [CrossRef]
- Hwang, S.W.; Shin, D.H.; Kim, C.O.; Hong, S.H.; Kim, M.C.; Kim, J.; Lim, K.Y.; Kim, S.; Choi, S.H.; Ahn, K.J.; et al. Plasmon Enhanced Ultraviolet Photoluminescence from Hybrid Structures of Graphene/ZnO Films. Phys. Rev. Lett. 2010, 105, 127403. [Google Scholar] [CrossRef]
- Shi, G.; Michelmore, A.; Jin, J.; Li, L.H.; Chen, Y.; Wang, L.; Yu, H.; Wallace, G.; Gambhir, S.; Zhu, S.; et al. Advancement in liquid exfoliation of graphite through simultaneously oxidizing and ultrasonicating. J. Mater. Chem. A 2014, 2, 20382–20392. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558. [Google Scholar] [CrossRef]
- Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. 2008, 130, 5856–5857. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 5226. [Google Scholar] [CrossRef]
- Song, S.; Kim, J.; Park, J.H.; Kim, S.; Lim, T.; Kim, J.H.; Moon, J.H.; Lee, B. High-Spatial-Resolution Position-Sensitive Plastic Scintillation Optical Fiber Bundle Detector. Photonics 2021, 8, 26. [Google Scholar] [CrossRef]
- Jang, K.W.; Yoo, W.J.; Moon, J.; Han, K.T.; Park, J.Y.; Lee, B. Measurements of relative depth doses and Cerenkov light using a scintillating fiber–optic dosimeter with Co-60 radiotherapy source. Appl. Radiat. Isot. 2012, 70, 274–277. [Google Scholar] [CrossRef]
- Hamamatsu Photonics, R6233-100 Specification. 2021. Available online: https://www.hamamatsu.com/jp/en/product/type/R6233/index.html (accessed on 4 October 2021).
- Knoll, G.F. Radiation Detection and Measurement, 4th ed.; John Wiley & Sons: New York, NY, USA, 2010; pp. 113–116. [Google Scholar]
- Teja, N.R.; Babu, M.A.; Prasad, T.R.S.; Ravi, T. Different types of dispersions in an optical fiber. Int. J. Sci. Res. 2012, 2, 1–5. [Google Scholar]
- Xiong, Y.; Xu, F. Multifunctional integration on optical fiber tips: Challenges and opportunities. Adv. Phot. 2020, 2, 064001. [Google Scholar] [CrossRef]
- Anusha, B.; Kumar, D.S.; Ghosh, S.; Parthiban, N.; Banji, D.; Goje, A. Gamma ray spectroscopy—An overview. Int. J. Adv. Pharm. Sci. 2011, 2, 91–101. [Google Scholar]
- Ji, Y.Y.; Lim, T.; Lee, W. In Situ Gamma-ray Spectrometry Using an LaBr3(Ce) Scintillation Detector. J. Radiat. Prot. Res. 2018, 43, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Hossain, I.; Sharip, N.; Viswanathan, K.K. Efficiency and resolution of HPGe and NaI(Tl) detectors using gamma-ray spectroscopy. Sci. Res. Essays 2012, 7, 86–89. [Google Scholar] [CrossRef]
- Adriani, O.; Ambriola, M.; Barbarino, G.; Barbier, L.M.; Bartalucci, S.; Bazilevskaja, G.; Bellotti, R.; Bertazzoni, S.; Bidoli, V.; Boezio, M.; et al. The PAMELA experiment on satellite and its capability in cosmic rays measurements. Nucl. Instrum. Methods. Phys. Res. A 2002, 478, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, G.; Mckenzie, I.; Dell’Olio, F.; Armenise, M.N.; Ciminelli, C. Measured radiation effects on InGaAsP/InP ring resonators for space applications. Opt. Express 2019, 27, 24434–24444. [Google Scholar] [CrossRef]
- Brasch, V.; Chen, Q.; Schiller, S.; Kippenberg, T.J. Radiation hardness of high-Q silicon nitride microresonators for space compatible integrated optics. Opt. Express 2014, 22, 30786–30794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumon, P.; Baets, R.; Kappeler, R.; Barros, D.; Mckenzie, I.; Doyle, D. Measured radiation sensitivity of Silica-on-Silicon and Silicon-on-insulator micro-photonic devices for potential space application. In Photonics for Space Environments X; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; p. 58970D. [Google Scholar]
Physical Properties | CdWO4 | LYSO:Ce | GAGG:Ce |
---|---|---|---|
Density (g/cm3) | 7.90 | 7.25 | 6.63 |
Wavelength of emission (nm) | 475 | 420 | 530 |
Light yield (photons/MeV) | 13,000 | 29,000 | 54,000 |
Melting point (°C) | 1598 | 2050 | 1850 |
Hygroscopicity | None | None | None |
Scintillators | CdWO4 | LYSO:Ce | GAGG:Ce | |
---|---|---|---|---|
Improvement | ||||
Amount of light increment (standard deviation) | 24.83% (±0.670%) | 26.89% (±0.834%) | 28.56% (±0.995%) | |
Reduction in FWHM at 1.17 MeV (standard deviation) | 1.23% (±0.0322%) | 1.19% (±0.0346%) | 1.41% (±0.0438%) | |
Reduction in FWHM at 1.33 MeV (standard deviation) | 1.23% (±0.0314%) | 1.14% (±0.0330%) | 1.02% (±0.0330%) |
Scintillators | CdWO4 | LYSO:Ce | GAGG:Ce | |
---|---|---|---|---|
Improvement | ||||
Amount of light increment (standard deviation) | 22.31% (±0.549%) | 24.72% (±0.682%) | 29.06% (±1.041%) | |
Reduction in FWHM at 0.662 MeV (standard deviation) | 2.23% (±0.0546%) | 2.11% (±0.0529%) | 2.06% (±0.0515%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Kim, S.; Song, S.; Lim, T.; Park, J.H.; Kim, J.; Pyeon, C.H.; Hwang, S.W.; Lee, B. Gamma-ray Spectroscopy Using Inorganic Scintillator Coated with Reduced Graphene Oxide in Fiber-Optic Radiation Sensor. Photonics 2021, 8, 543. https://doi.org/10.3390/photonics8120543
Kim JH, Kim S, Song S, Lim T, Park JH, Kim J, Pyeon CH, Hwang SW, Lee B. Gamma-ray Spectroscopy Using Inorganic Scintillator Coated with Reduced Graphene Oxide in Fiber-Optic Radiation Sensor. Photonics. 2021; 8(12):543. https://doi.org/10.3390/photonics8120543
Chicago/Turabian StyleKim, Jin Ho, Seunghyeon Kim, Siwon Song, Taeseob Lim, Jae Hyung Park, Jinhong Kim, Cheol Ho Pyeon, Sung Won Hwang, and Bongsoo Lee. 2021. "Gamma-ray Spectroscopy Using Inorganic Scintillator Coated with Reduced Graphene Oxide in Fiber-Optic Radiation Sensor" Photonics 8, no. 12: 543. https://doi.org/10.3390/photonics8120543
APA StyleKim, J. H., Kim, S., Song, S., Lim, T., Park, J. H., Kim, J., Pyeon, C. H., Hwang, S. W., & Lee, B. (2021). Gamma-ray Spectroscopy Using Inorganic Scintillator Coated with Reduced Graphene Oxide in Fiber-Optic Radiation Sensor. Photonics, 8(12), 543. https://doi.org/10.3390/photonics8120543