A Numerical Study of Optimization Methods for Phase-Only Optical Pulse-Shaping
Abstract
:1. Introduction
2. Principle of Optical Pulse Shaping
3. Time Domain Pulse Processing
4. Phase-Only Optimization
4.1. Objective Function
4.2. Brute Force Monte Carlo Method
Description
4.3. Simulation Results
5. Simulated Annealing Method
5.1. Description
5.2. Simulation Results
6. Genetic Algorithm Method
6.1. Description
6.2. Simulation Results
7. Comparison of Optimization Methods
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Comstock, M.; Lozovoy, V.V.; Pastirk, I.; Dantus, M. Multiphoton intrapulse interference 6; binary phase shaping. Opt. Express 2004, 12, 1061–1066. [Google Scholar] [CrossRef] [Green Version]
- Azaña, J.; Berger, N.; Levit, B.; Fischer, B. Reconfigurable generation of high-repetition-rate optical pulse sequences based on time-domain phase-only filtering. Opt. Lett. 2005, 30, 3228–3230. [Google Scholar] [CrossRef] [PubMed]
- Weiner, A.M. Femtosecond pulse shaping using spatial light modulator. Rev. Sci. Instrum. 2000, 71, 1929–1960. [Google Scholar] [CrossRef]
- Zeidler, D.; Frey, S.; Kompa, K.-L.; Motzkus, M. Evolutionary algorithms and their application to optimal control studies. Phys. Rev. A 2001, 64, 023420. [Google Scholar] [CrossRef] [Green Version]
- Weiner, A.M.; Oudin, S.; Leaird, D.E.; Reitze, D.H. Shaping of femtosecond pulses using phase-only filters designed by simulated annealing. J. Opt. Soc. Am. A 1993, 10, 1112–1120. [Google Scholar] [CrossRef]
- Slavik, R.; Oxenlowe, L.K.; Galili, M.; Mulvad, H.C.H.; Park, Y.; Azaña, J.; Jeppesen, P. Demultiplexing of 320-Gb/s OTDM data using ultrashort flat-top pulses. IEEE Photon. Technol. Lett. 2007, 19, 1855–1857. [Google Scholar] [CrossRef]
- Caraquitena, J.; Jiang, Z.; Leaird, D.E.; Weiner, A.M. Simultaneous repetition-rate multiplication and envelope control based on periodic phase-only and phase-mostly line-by-line pulse shaping. J. Opt. Soc. Am. B 2007, 24, 3034–3039. [Google Scholar] [CrossRef]
- Latkin, A.I.; Boscolo, S.; Turitsyn, S.K. Passive nonlinear pulse shaping in normally dispersive fiber. In Proceedings of the OFC/NFOEC 2008, San Diego, CA, USA, 24–28 February 2008. [Google Scholar]
- Parmigiani, F.; Petropoulos, P.; Ibsen, M.; Ng, T.T.; Richardson, D.J. OTDM add-drop multiplexer using a saw-tooth pulse shaper. In Proceedings of the 34th European Conference on Optical Communications (ECOC), Brussels, Belgium, 21–25 September 2008. [Google Scholar]
- Fermann, M.E.; Kruglov, V.I.; Thomsen, B.C.; Dudley, J.M.; Harvey, J.D. Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 2000, 84, 6010–6013. [Google Scholar] [CrossRef] [Green Version]
- Ilday, F.O.; Buckley, J.R.; Clark, W.G.; Wise, F.W. Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 2004, 92, 213902. [Google Scholar] [CrossRef] [Green Version]
- Weiner, A.M.; Heritage, J.P.; Hawkins, R.J.; Thurston, R.N.; Kirschner, E.M.; Leaird, D.E.; Tomlinson, W.J. Experimental observation of the fundamental dark soliton in optical fibers. Phys. Rev. Lett. 1988, 61, 2445–2448. [Google Scholar] [CrossRef]
- Wang, X.; Wada, N. Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application. Opt. Express 2007, 15, 7319–7326. [Google Scholar] [CrossRef] [Green Version]
- Sardesai, H.P.; Chang, C.C.; Weiner, A.M. A femtosecond code-division multiple-access communication system test bed. J. Light. Technol. 1998, 16, 1953–1964. [Google Scholar] [CrossRef]
- Bardeen, C.J.; Yakovlev, V.V.; Wilson, K.R.; Carpenter, S.; Weber, P.M.; Warren, W.S. Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 1997, 280, 151–158. [Google Scholar] [CrossRef]
- Weinacht, T.C.; Ahn, J.; Bucksbaum, P.H. Controlling the shape of a quantum wavefunction. Nature 1999, 397, 233–235. [Google Scholar] [CrossRef]
- Karar, A.S.; Ghandour, R.; Mahariq, I.; Alboon, S.A.; Maaz, I.; Neji, B.; Barakat, J.M.H. A Programmable Mode-Locked Fiber Laser Using Phase-Only Pulse Shaping and the Genetic Algorithm. Photonics 2020, 7, 69. [Google Scholar] [CrossRef]
- Kolner, B.H. Space-time duality and the theory of temporal imaging. IEEE J. Quant. Electron. 1994, 30, 1951–1963. [Google Scholar] [CrossRef]
- Jannson, T. Real-time fourier transformation in dispersive optical fibers. Opt. Lett. 1983, 8, 232–234. [Google Scholar] [CrossRef]
- Thomas, S.; Malacarne, A.; Poti, L.; Bogoni, A.; Azaña, J. Programmable all-fibre optical pulse shaper based on time-domain binary phase-only linear filtering. In Proceedings of the European Conference on Optical Communications (ECOC), Brussels, Belgium, 21–25 September 2008. [Google Scholar]
- Thomas, S.; Malacarne, A.; Fresi, F.; Poti, L.; Azana, J. Fiber-Based Programmable Picosecond Optical Pulse Shaper. J. Light. Technol. 2010, 28, 1832–1843. [Google Scholar] [CrossRef]
- Saperstein, R.E.; Ali´c, N.; Panasenko, D.; Rokitski, R.; Fainman, Y. Timedomain waveform processing by chromatic dispersion for temporal shaping of optical pulses. J. Opt. Soc. Am. B 2005, 22, 2427–2436. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Hacker, M.; Stobrawa, G.; Feurer, T. Iterative Fourier transform algorithm for phase-only pulse shaping. Opt. Express 2001, 9, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Sheveleva, A.; Colman, P.; Finot, C. The temporal analogue of diffractive couplers. Results Opt. 2021, 3, 100059. [Google Scholar] [CrossRef]
- Rundquist, A.; Efimov, A.; Reitze, D.H. Pulse shaping with the Gerchberg-Saxton algorithm. J. Opt. Soc. Am. B 2002, 19, 2468–2478. [Google Scholar] [CrossRef]
- Binder, K.; Heermann, D.W. Monte Carlo Simulation in Statistical Physics; Springer: Berlin, Germany, 2002. [Google Scholar]
- Brandt, S. Data Analysis: Statistical and Computational Methods for Scientists and Engineers; Springer: New York, NY, USA, 1999. [Google Scholar]
- Xia, X.L.; Ren, D.P.; Tan, H.P. A curve Monte-Carlo method for radiative heat transfer in absorbing and scattering gradient-index medium. Numer. Heat Transf. Part Fundam. 2006, 50, 181–192. [Google Scholar] [CrossRef]
- Marshak, A.; Davis, A.B. 3D Radiative Transfer in Cloudy Atmospheres; Springer: Berlin, Germany, 2005. [Google Scholar]
- Belegundu, A.D.; Rupatla, T.R.C. Optimization Concepts and Applications in Engineering; Prentice-Hall: New Jersey, NJ, USA, 1999. [Google Scholar]
- Metropolis, N.; Rosenbluth, A.; Rosenbluth, M.; Teller, A.; Teller, E. Equations of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Cerny, V. A thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm. J. Optm. Theor. Appl. 1985, 45, 41–51. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithm in Search, Optimization and Machine Learning; Addison-Wesley: Reading, MA, USA, 1997. [Google Scholar]
Optimization Method | Optimal Phase Modulation | |
---|---|---|
Brute Force MC | 01110111011001100110011001111111 | |
Simulated Annealing | 10000011001100110011001100110110 | |
Genetic Algorithm | 11100110011001100110011001100110 |
Optimization Method | Optimal Phase Modulation | |
---|---|---|
Brute Force MC | 00101111110111101111010101010010 | |
Simulated Annealing | 01010100010101000010000100110110 | |
Genetic Algorithm | 00010101010101110111011101010101 |
Optimization Method | Optimal Phase Modulation | |
---|---|---|
Brute Force MC | 10101011101111111111001010110011 | |
Simulated Annealing | 10010000110100000000001110000101 | |
Genetic Algorithm | 00011111010111111111100011110000 |
Optimization Method | Optimal Phase Modulation | |
---|---|---|
Brute Force MC | 11110011110011111111100001101011 | |
Simulated Annealing | 10101000011000000000111010001010 | |
Genetic Algorithm | 01100001011100000000011000000110 |
Optimization Method | Optimal Phase Modulation | |
---|---|---|
Brute Force MC | 00001010011111111111000011010101 | |
Simulated Annealing | 01011111111010000000000000100110 | |
Genetic Algorithm | 01111111010000000000110111111111 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karar, A.S.; Ghandour, R.; Boulkaibet, I.; Collaku, D.; Barakat, J.M.H.; Neji, B.; Al Barakeh, Z. A Numerical Study of Optimization Methods for Phase-Only Optical Pulse-Shaping. Photonics 2021, 8, 490. https://doi.org/10.3390/photonics8110490
Karar AS, Ghandour R, Boulkaibet I, Collaku D, Barakat JMH, Neji B, Al Barakeh Z. A Numerical Study of Optimization Methods for Phase-Only Optical Pulse-Shaping. Photonics. 2021; 8(11):490. https://doi.org/10.3390/photonics8110490
Chicago/Turabian StyleKarar, Abdullah S., Raymond Ghandour, Ilyes Boulkaibet, Dhimiter Collaku, Julien Moussa H. Barakat, Bilel Neji, and Zaher Al Barakeh. 2021. "A Numerical Study of Optimization Methods for Phase-Only Optical Pulse-Shaping" Photonics 8, no. 11: 490. https://doi.org/10.3390/photonics8110490
APA StyleKarar, A. S., Ghandour, R., Boulkaibet, I., Collaku, D., Barakat, J. M. H., Neji, B., & Al Barakeh, Z. (2021). A Numerical Study of Optimization Methods for Phase-Only Optical Pulse-Shaping. Photonics, 8(11), 490. https://doi.org/10.3390/photonics8110490