Generation of Subpicosecond Pulse Trains in Fiber Cascades Comprising a Cylindrical Waveguide with Propagating Refractive Index Wave
Abstract
:1. Introduction
2. Light Wave Propagation in the Cylindrical Waveguide with RRIW
3. Cascaded Fiber Configuration for Generation of Subpicosecond Pulse Trains
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torchigin, V.P. Amplification of light pulses in waveguides with a periodically varying refractive index. Quantum Electron. 1995, 22, 509–510. [Google Scholar] [CrossRef]
- Sychugov, V.A.; Torchigin, V.P.; Tsvetkov, M.Y. Whispering-gallery waves in optical fibres. Quantum Electron. 2002, 32, 738–742. [Google Scholar] [CrossRef]
- Torchigin, V.P.; Torchigin, S.V. Optical solitons appearing during propagation of whispering-gallery waves. Quantum Electron. 2003, 33, 913–918. [Google Scholar] [CrossRef]
- Zolotovskii, I.O.; Korobko, D.A.; Lapin, V.A.; Sementsov, D.I. Modulation instability of pulsed radiation in an optical waveguide in the presence of the traveling refractive index wave. Opt. Spectrosc. 2016, 121, 277. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J. Optical Waveguide Theory; Springer US: New York, NY, USA, 1983; 734p. [Google Scholar]
- Foreman, M.R.; Swaim, J.D.; Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photon. 2015, 7, 168–240. [Google Scholar] [CrossRef]
- McCall, S.L.; Levi, A.F.J.; Slusher, R.E.; Pearton, S.J.; Logan, R.A. Whisperinggallery mode microdisk laser. Appl. Phys. Lett. 1992, 60, 289–291. [Google Scholar] [CrossRef]
- Vahala, K.J. Optical microcavities. Nature. 2003, 24, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Zolotovskii, I.O.; Korobko, D.A.; Lapin, V.A.; Mironov, P.P.; Sementsov, D.I.; Yavtushenko, M.S.; Fotiadi, A.A. Generation of ultrashort laser pulses through a resonant interaction of quasi-continuous wave packet with running refractive index wave. J. Opt. Soc. Am. B 2019, 36, 2877–2883. [Google Scholar] [CrossRef]
- Zolotovskii, I.O.; Korobko, D.A.; Lapin, V.A.; Mironov, P.P.; Sementsov, D.I.; Fotiadi, A.A.; Yavtushenko, M.S. Generation of subpicosecond pulses due to the development of modulation instability of whispering-gallery-mode wave packets in an optical waveguide with a travelling refractive-index wave. Quantum. Electron. 2018, 48, 818–822. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics, 4th ed.; Springer: New York, NY, USA, 2007; 530p. [Google Scholar]
- Chernikov, S.V.; Mamyshev, P.V. Femtosecond soliton propagation in fibers with slowly decreasing dispersion. J. Opt. Soc. Am. B 1991, 8, 1633. [Google Scholar] [CrossRef]
- Zolotovskii, I.O.; Lapin, V.A.; Sementsov, D.I.; Fotiadi, A.A.; Popov, S.V. Generation of high frequency trains of chirped soliton-like pulses in inhomogeneous and cascaded active fiber configurations. Opt. Commun. 2018, 426, 333–340. [Google Scholar] [CrossRef]
- Kivshar, Y.S.; Agrawal, G.P. Optical Solitons: From Fibers to Photonic Crystals; Academic Press: New York, NY, USA, 2003; p. 125. [Google Scholar]
- Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory ofBose-Einstein condensation in trapped gases. Rev. Mod. Phys. 1999, 71, 463. [Google Scholar] [CrossRef] [Green Version]
- Abdullaev, F.K.; Darmanyan, S.A.; Garnier, J. Modulation instability of electromagnetic waves in inhomogeneous and in discrete media. Prog. Opt. 2002, 44, 303. [Google Scholar]
- Inouye, S.; Andrws, M.R.; Stenger, J.; Miesner, H.-J.; Stamper-Kurn, D.M.; Ketterle, W. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature 1998, 392, 151. [Google Scholar] [CrossRef]
- Torchigin, V.P. Light amplification in optical waveguides and cavities formed by an acoustic wave. J. Tech. Phys. 1996, 8, 107. [Google Scholar]
- Torchigin, V.P. Conversion of light in a focon with an acoustic wave as the pump. J. Tech. Phys. 1996, 4, 128. [Google Scholar]
- Torchigin, V.P. Possibility of using the interaction of acoustic and light waves in optical fibers to generate short light pulses. Quantum Electron. 1993, 3, 235–240. [Google Scholar] [CrossRef]
- Abramov, A.S.; Kadochkin, A.S.; Sannikov, D.G.; Zolotovskii, I.O.; Yavtushenko, M.S.; Moiseev, S.G.; Svetukhin, V.V.; Fotiadi, A. Cylindrical silicon near-IR optical amplifier driven by direct current. J. Opt. Soc. Am. B 2020, 37, 2314–2318. [Google Scholar] [CrossRef]
- Goutzoulis, A.P.; Pape, D.R. Design and Fabrication of Acousto-Optic Devices; Marcel Dekker: New York, NY, USA, 1994; p. 68. [Google Scholar]
- Savchenkov, A.; Strekalov, D.; Ilchenko, V.; Maleki, L.; Grudinin, I.; Matsko, A. Ultra high Q crystalline microcavities. Opt. Commun. 2006, 265, 33–38. [Google Scholar]
- Llopis, O.; Merrer, P.H.; Bouchier, A.; Saleh, K.; Cibiel, G. High-Q optical resonators: Characterization and application to stabilization of lasers and high spectral purity microwave oscillators. Proc. SPIE 2010, 7579, 75791B. [Google Scholar]
- Birks, T.F.; Knight, J.C.; Dimmik, T.E. High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment. IEEE Photon. Technol. Lett. 2000, 12, 182. [Google Scholar] [CrossRef]
- Sumetsky, M. Nanophotonics of optical fibers. Nanophotonics 2013, 2, 393. [Google Scholar] [CrossRef]
- Sumetsky, M. Delay of Light in an Optical Bottle Resonator with Nanoscale Radius Variation: Dispersionless, Broadband, and Low Loss. Phys. Rev. Lett. 2013, 111, 163901. [Google Scholar] [CrossRef] [Green Version]
- Watts, A.L.; Singh, N.; Poulton, C.G.; Magi, E.C.; Kabakova, I.V.; Hudson, D.D.; Eggleton, B.J. Photoinduced axial quantization in chalcogenide microfiber resonators. J. Opt. Soc. Am. B 2013, 30, 3249. [Google Scholar] [CrossRef]
- Yariv, A.; Yeh, P. Photonics: Optical Electronics in Modern Communications; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Petrov, V.M.; Agruzov, P.M.; Lebedev, V.V.; Il’ichev, I.V.; Shamray, A.V. Broadband integrated optical modulators: Achievements and prospects. Phys. Usp. 2021, 64, 722–739. [Google Scholar] [CrossRef]
- Mafi, A.J. Pulse propagation in a short nonlinear graded-index multimode optical fiber. Lightw. Technol. 2012, 30, 2803. [Google Scholar] [CrossRef]
- Renninger, W.H.; Wise, F.W. Optical solitons in graded-index multimode fibers. Nat. Commun. 2013, 4, 1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupa, K.; Tonello, A.; Barthélémy, A.; Couderc, V.; Shalaby, B.M.; Bendahmane, A.; Millot, G.; Wabnitz, S. Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves. Phys. Rev. Lett. 2016, 116, 183901. [Google Scholar] [CrossRef] [Green Version]
- Krupa, K.; Tonello, A.; Shalaby, B.M.; Fabert, M.; Barthélémy, A.; Millot, G.; Wabnitz, S.; Couderc, V. Spatial beam self –cleaning in multimode fibres. Nat. Photonics 2017, 11, 237. [Google Scholar] [CrossRef] [Green Version]
- Seeds, A.J.; Williams, K.J. Microwave photonics. IEEE J. Lightw. Technol. 2006, 24, 4628–4641. [Google Scholar] [CrossRef]
- Lobach, I.A.; Kablukov, S.I.; Podivilov, E.V.; Fotiadi, A.A.; Babin, S.A. Fourier synthesis with single-mode pulses from a multimode laser. Opt. Lett. 2015, 40, 3671. [Google Scholar] [CrossRef] [PubMed]
- Lobach, I.A.; Drobyshev, R.V.; Fotiadi, A.A.; Podivilov, E.V.; Kablukov, S.I.; Babin, S. Open-cavity fiber laser with distributed feedback based on externally or self-induced dynamic gratings. Opt. Lett. 2017, 42, 4207–4210. [Google Scholar] [CrossRef]
- Kharif, C.; Pelinovsky, E.; Slunyaev, A. Rogue Waves in the Ocean; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Solli, D.R.; Ropers, C.; Koonath, P.; Jalali, B. Optical rogue waves. Nature 2007, 450, 1054. [Google Scholar] [CrossRef] [PubMed]
- Moses, J.; Malomed, B.A.; Wise, F.W. Self-steepening of ultrashort optical pulses without self-phase modulation. Phys. Rev. A 2007, 76, 021802. [Google Scholar] [CrossRef]
- Agrawal, G. Applications of Nonlinear Fiber Optics; Academic Press: New York, NY, USA, 2008; p. 508. [Google Scholar]
- Krahenbuhl, R.; Burns, W.K. Modeling of broad-band traveling-wave optical-intensity modulators. IEEE Trans. Microw. Theory Tech. 2000, 48, 860–864. [Google Scholar] [CrossRef]
- Kawanishi, T.; Sakamoto, T.; Izutsu, M. High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect. IEEE J. Select. Top. Quantum Electron. 2007, 13, 79–91. [Google Scholar] [CrossRef]
- Lim, C.; Nirmalathas, A.; Bakaul, M.; Gamage, P.; Lee, K.L.; Yang, D.; Novak, D.; Waterhouse, R. Fiber-wireless networks and subsystem technologies. J. Lightw. Technol. 2010, 8, 390–405. [Google Scholar] [CrossRef]
- Wake, D.; Nkansah, A.; Gomes, N.J. Radio over fiber link for next generation wireless system. J. Lightw. Technol. 2010, 28, 2456–2464. [Google Scholar] [CrossRef] [Green Version]
- Wake, D.; Dupont, S.; Lethien, C.; Vilcot, J.; Decoster, D. Radio frequency transmission over multimode fibre for distributed antenna system applications. Electron Lett. 2001, 37, 1087–1089. [Google Scholar] [CrossRef]
- Geddes, C.G.; Toth, C.; Tilborg, J.; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 2004, 431, 538. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramov, A.; Zolotovskii, I.; Kamynin, V.; Domanov, A.; Alekseev, A.; Korobko, D.; Yavtushenko, M.; Fotiadi, A. Generation of Subpicosecond Pulse Trains in Fiber Cascades Comprising a Cylindrical Waveguide with Propagating Refractive Index Wave. Photonics 2021, 8, 484. https://doi.org/10.3390/photonics8110484
Abramov A, Zolotovskii I, Kamynin V, Domanov A, Alekseev A, Korobko D, Yavtushenko M, Fotiadi A. Generation of Subpicosecond Pulse Trains in Fiber Cascades Comprising a Cylindrical Waveguide with Propagating Refractive Index Wave. Photonics. 2021; 8(11):484. https://doi.org/10.3390/photonics8110484
Chicago/Turabian StyleAbramov, Aleksei, Igor Zolotovskii, Vladimir Kamynin, Andrei Domanov, Aleksandr Alekseev, Dmitry Korobko, Marina Yavtushenko, and Andrei Fotiadi. 2021. "Generation of Subpicosecond Pulse Trains in Fiber Cascades Comprising a Cylindrical Waveguide with Propagating Refractive Index Wave" Photonics 8, no. 11: 484. https://doi.org/10.3390/photonics8110484
APA StyleAbramov, A., Zolotovskii, I., Kamynin, V., Domanov, A., Alekseev, A., Korobko, D., Yavtushenko, M., & Fotiadi, A. (2021). Generation of Subpicosecond Pulse Trains in Fiber Cascades Comprising a Cylindrical Waveguide with Propagating Refractive Index Wave. Photonics, 8(11), 484. https://doi.org/10.3390/photonics8110484