Flexible Broadband Metamaterial Perfect Absorber Based on Graphene-Conductive Inks
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, D.R.; Padilla, W.J.; Vier, D.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Tang, X.; Wang, Z.; Zhang, Y.; Chen, X.; Chen, M.; Gong, Y. Observation of the reversed Cherenkov radiation. Nat. Commun. 2017, 8, 14901. [Google Scholar] [CrossRef]
- Seddon, N.; Bearpark, T. Observation of the inverse Doppler effect. Science 2003, 302, 1537. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Rosenberg, J.; Shenoi, R.V.; Vandervelde, T.E.; Krishna, S.; Painter, O.A. A multispectral and polarization-selective surface-plasmon resonant midinfrared detector. Appl. Phys. Lett. 2009, 95, 161101. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Veronis, G.; Fan, S.; Brongersma, M.L. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures. Appl. Phys. Lett. 2006, 89, 151116. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.L.; Zhao, Y. Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, R.; Zahertar, S.; Torun, H.; Liu, Y.R.; Wang, M.; Lu, Y.; Fu, Y.Q. Flexible and integrated sensing platform of acoustic waves and metamaterials based on polyimide-coated woven carbon fibers. ACS Sens. 2020, 5, 2563–2569. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Li, X.; Wang, M.; Xia, F.; Zhang, K.; Kong, W.; Yun, M. Ultrabroadband metamaterial absorbers from ultraviolet to near-infrared based on multiple resonances for harvesting solar energy. Opt. Express 2021, 29, 6000–6010. [Google Scholar] [CrossRef] [PubMed]
- Elsharabasy, A.; Bakr, M.; Deen, M.J. Wide-angle, wide-band, polarization-insensitive metamaterial absorber for thermal energy harvesting. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Iwaszczuk, K.; Strikwerda, A.C.; Fan, K.; Zhang, X.; Averitt, R.D.; Jepsen, P.U. Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt. Express 2012, 20, 635–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.C.; Wang, D.H.; Ma, J.J.; Li, B.Y.; Zhao, Y.J.; Li, K.X. An ultrathin and broadband radar absorber using metamaterials. Waves Random Complex Media 2019, 31, 1–10. [Google Scholar] [CrossRef]
- Kim, J.; Han, K.; Hahn, J.W. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Landy, N.; Bingham, C.; Tyler, T.; Jokerst, N.; Smith, D.; Padilla, W. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 2009, 79, 125104. [Google Scholar] [CrossRef] [Green Version]
- Sadeqi, A.; Nejad, H.R.; Sonkusale, S. Low-cost metamaterial-on-paper chemical sensor. Opt. Express 2017, 25, 16092–16100. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.; Binzhen, Z.; Wanjun, W.; Junlin, W.; Junping, D. Design, fabrication, and characterization of a flexible dual-band metamaterial absorber. IEEE Photonics J. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Dayal, G.; Ramakrishna, S.A.J. High temperature VO2 based microbolometer with enhanced light absorption. Phys. D Appl. Phys. 2014, 48, 035105. [Google Scholar] [CrossRef]
- Kim, H.K.; Ling, K.; Kim, K.; Lim, S. Flexible inkjet-printed metamaterial absorber for coating a cylindrical object. Opt. Express 2015, 23, 5898–5906. [Google Scholar] [CrossRef]
- Nguyen, T.Q.H.; Nguyen, T.K.T.; Cao, T.N.; Nguyen, H.; Bach, L.G. Numerical study of a broadband metamaterial absorber using a single split circle ring and lumped resistors for X-band applications. AIP Adv. 2020, 10, 035326. [Google Scholar] [CrossRef]
- Li, S.J.; Wu, P.X.; Xu, H.X.; Zhou, Y.L.; Cao, X.Y.; Han, J.F.; Zhang, Z. Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects. Nanoscale Res. Lett. 2018, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Miles, V.B.; Xian, C.X.; Yang, Y.C.; Shun, Z.; Jizhou, S.; Guoliang, H.J. Experimental demonstration of a dissipative multi-resonator metamaterial for broadband elastic wave attenuation. Sound Vib. 2019, 438, 1–12. [Google Scholar]
- CST Microwave Studio 2015, License ID: 52856-1. Dassault Systèmes. Available online: http://www.cst.com (accessed on 15 June 2021).
- Dycotec Materials Ltd-Industrial Estate. Unit 6 Stanier Rd. Porte Marsh Rd. Calne SN11 9PX. United Kingdom. Available online: https://www.dycotecmaterials.com/ (accessed on 1 July 2021).
- Balanis, C.A. Advanced Engineering Electromagnetics; John Wiley and Sons: Hoboken, NJ, USA, 1989. [Google Scholar]
- Fang, W.; Zhou, F.-K.; Wang, Y.-J.; Chen, P. Broadband, wide-angle, polarization-independent and lightweight low-scattering coding metamaterial based on stereo meta-atoms. Results Phys. 2021, 20, 103687. [Google Scholar] [CrossRef]
- Yanjie, W.; Hai, L.; Jie, X.; Junjie, H.; Rui, Z.; Feng, D.; Rongxin, T.J. A broadband metamaterial absorber design using characteristic modes analysis. Appl. Phys. 2021, 129, 134902. [Google Scholar]
- Guangsheng, D.; Kun, L.; Hanxiao, S.; Yuan, H.; Xiaoying, Z.; Zhiping, Y.; Jun, Y. Wideband absorber based on conductive ink frequency selective surface with polarization insensitivity and wide-incident-angle stability. Nanomater. Nanotechnol. 2020, 10, 1847980420935718. [Google Scholar]
- Mohammad, M.N.; Seyed, M.B.; Mohsen, H.; Masoud, M. Ink-jet printed metamaterial microwave absorber using reactive inks. Int. J. Electron. Commun. 2020, 123, 153259. [Google Scholar]
- Manish, M.T.; Nisha, G. Broadband Polarization-Insensitive Inkjet-Printed Conformal Metamaterial Absorber. IEEE Trans. Electromagn. Compat. 2021, 1–8. Available online: https://ieeexplore.ieee.org/abstract/document/9502159 (accessed on 1 July 2021).
- Guangsheng, D.; Kun, L.; Hanxiao, S.; Yuan, H.; Xiaoying, Z.; Zhiping, Y.; Ying, L.; Jun, Y. An ultra-wideband, polarization insensitive metamaterial absorber based on multiple resistive film layers with wide-incident-angle stability. Int. J. Microw. Wirel. Technol. 2021, 13, 58–66. [Google Scholar]
Reference | Operating Frequency (GHz) | Bandwidth (GHz) (Absorption over 90%) | FBW (%) (Absorption over 90%) | Thickness (mm) | Number of Dielectric Layers | Flexible |
---|---|---|---|---|---|---|
[25] | 12–23 | 11 | 62.86 | 6 | 1 (stereo structure) | no |
[26] | 3.21–14.35 | 11.14 | 126.88 | 9.2 | 2 | no |
[27] | 6.58–16.38 | 9.8 | 85.4 | 3.3 | 1 | no |
[28] | 6.66–7.04 | 0.38 | 5.55 | 7.2 | 1 | yes |
[29] | 8.43–10.38 | 1.95 | 20.73 | 1.06 | 4 | yes |
[30] | 2.34–18.95 | 16.61 | 156 | 11.3 | 3 | yes |
This work | 7.88–18.01 | 10.13 | 78.25 | 2.5 | 1 | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, L.V.; Khiem, N.S.; Tung, B.S.; Tung, N.T.; Giang, T.T.; Son, P.T.; Khuyen, B.X.; Lam, V.D.; Chen, L.; Zheng, H.; et al. Flexible Broadband Metamaterial Perfect Absorber Based on Graphene-Conductive Inks. Photonics 2021, 8, 440. https://doi.org/10.3390/photonics8100440
Long LV, Khiem NS, Tung BS, Tung NT, Giang TT, Son PT, Khuyen BX, Lam VD, Chen L, Zheng H, et al. Flexible Broadband Metamaterial Perfect Absorber Based on Graphene-Conductive Inks. Photonics. 2021; 8(10):440. https://doi.org/10.3390/photonics8100440
Chicago/Turabian StyleLong, Le Van, Nguyen Sy Khiem, Bui Son Tung, Nguyen Thanh Tung, Trinh Thi Giang, Pham Thanh Son, Bui Xuan Khuyen, Vu Dinh Lam, Liangyao Chen, Haiyu Zheng, and et al. 2021. "Flexible Broadband Metamaterial Perfect Absorber Based on Graphene-Conductive Inks" Photonics 8, no. 10: 440. https://doi.org/10.3390/photonics8100440
APA StyleLong, L. V., Khiem, N. S., Tung, B. S., Tung, N. T., Giang, T. T., Son, P. T., Khuyen, B. X., Lam, V. D., Chen, L., Zheng, H., & Lee, Y. (2021). Flexible Broadband Metamaterial Perfect Absorber Based on Graphene-Conductive Inks. Photonics, 8(10), 440. https://doi.org/10.3390/photonics8100440