Estimations of Low-Inertia Cubic Nonlinearity Featured by Electro-Optical Crystals in the THz Range
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, X.C.; Shkurinov, A.; Zhang, Y. Extreme terahertz science. Nat. Photonics 2017, 11, 16–18. [Google Scholar] [CrossRef]
- Avetisyan, Y.; Tonouchi, M. Nearly Single-Cycle Terahertz Pulse Generation in Aperiodically Poled Lithium Niobate. Photonics 2019, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, M.; Hauri, C.P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Huang, J.; Huang, Z.; Nikolaev, N.; Lanskii, G.; Mamrashev, A.; Andreev, Y. Optical properties of BiB3O6 in the terahertz range. Results Phys. 2020, 16, 102815. [Google Scholar] [CrossRef]
- Sajadi, M.; Wolf, M.; Kampfrath, T. Terahertz-field-induced optical birefringence in common window and substrate materials. Opt. Express 2015, 23, 28985. [Google Scholar] [CrossRef] [PubMed]
- Dexheimer, S.L. Terahertz Spectroscopy: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Dolgaleva, K.; Materikina, D.V.; Boyd, R.W.; Kozlov, S.A. Prediction of an extremely large nonlinear refractive index for crystals at terahertz frequencies. Phys. Rev. A 2015, 92, 023809. [Google Scholar] [CrossRef] [Green Version]
- Korpa, C.L.; Tóth, G.; Hebling, J. Interplay of diffraction and nonlinear effects in the propagation of ultrashort pulses. J. Phys. At. Mol. Opt. Phys. 2016, 49, 035401. [Google Scholar] [CrossRef] [Green Version]
- Tcypkin, A.N.; Melnik, M.V.; Zhukova, M.O.; Vorontsova, I.O.; Putilin, S.E.; Kozlov, S.A.; Zhang, X.C. High Kerr nonlinearity of water in THz spectral range. Opt. Express 2019, 27, 10419–10425. [Google Scholar] [CrossRef] [Green Version]
- Rogalin, V.E.; Kaplunov, I.A.; Kropotov, G.I. Optical Materials for the THz Range. Opt. Spectrosc. 2018, 125, 1053–1064. [Google Scholar] [CrossRef]
- Rosli, A.N.; Zabidi, N.A.; Kassim, H.A. Ab initio calculation of vibrational frequencies of ZnSe and the Raman spectra. AIP Conf. Proc. 2014, 1588, 265–270. [Google Scholar] [CrossRef]
- Hattori, T.; Homma, Y.; Mitsuishi, A.; Tacke, M. Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared. Opt. Commun. 1973, 7, 229–232. [Google Scholar] [CrossRef]
- Said, A.A.; Sheik-Bahae, M.; Hagan, D.J.; Wei, T.H.; Wang, J.; Young, J.; Stryland, E.W.V. Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. J. Opt. Soc. Am. B 1992, 9, 405. [Google Scholar] [CrossRef]
- Palmer, D.W. Properties of II-VI Semiconductors. 2008. Available online: http://www.semiconductors.co.uk/propiivi5410.htm (accessed on 9 August 2019).
- Su, C.H.; Feth, S.; Lehoczky, S. Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry. Mater. Lett. 2009, 63, 1475–1477. [Google Scholar] [CrossRef]
- Handbook of Infrared Optical Materials; Klocek, P. (Ed.) CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Irwin, J.C.; LaCombe, J. Raman Scattering in ZnTe. J. Appl. Phys. 1970, 41, 1444–1450. [Google Scholar] [CrossRef]
- Schall, M.; Helm, H.; Keiding, S.R. Infrared Properties of Electro-Optic Crystals Measured by THz Time-Domain Spectroscopy. Int. J. Infrared Millim. Waves 1999, 20, 595–604. [Google Scholar] [CrossRef]
- Strauss, A. The physical properties of cadmium telluride. Revue de Physique Appliquée 1977, 12, 167–184. [Google Scholar] [CrossRef]
- Collaboration: Authors and editors of the volumes III/17B-22A-41B. Cuprous bromide (gamma-CuBr) deformation potentials. In II-VI and I-VII Compounds; Semimagnetic Compounds; Springer: New York, NY, USA, 1999; pp. 1–2. [Google Scholar]
- Wald, F. Applications of CdTe. A review. Revue de Physique Appliquée 1977, 12, 277–290. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998; Volume 3. [Google Scholar]
- Marple, D.T.F. Refractive Index of ZnSe, ZnTe, and CdTe. J. Appl. Phys. 1964, 35, 539–542. [Google Scholar] [CrossRef]
- Krishnan, R.; Krishnamurthy, N. The Raman spectrum of gallium phosphide. J. Phys. 1965, 26, 630–633. [Google Scholar] [CrossRef]
- Vodopyanov, K.L. Terahertz-wave generation with periodically inverted gallium arsenide. Laser Phys. 2009, 19, 305–321. [Google Scholar] [CrossRef]
- Siklitsky, V. New Semiconductor Materials.Characteristics and Properties. 2001. Available online: http://www.ioffe.rssi.ru/SVA/NSM (accessed on 17 August 2020).
- Axe, J.; O’kane, D. Infrared dielectric dispersion of LiNbO3. Appl. Phys. Lett. 1966, 9, 58–60. [Google Scholar] [CrossRef]
- Schlarb, U.; Betzler, K. Refractive indices of lithium niobate as a function of wavelength and composition. J. Appl. Phys. 1993, 73, 3472–3476. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.; Riccius, H.; Edwin, R. Refractive indices of lithium niobate. Opt. Commun. 1976, 17, 332–335. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Marsh, P. Defect structure dependence on composition in lithium niobate. Acta Crystallogr. Sect. Struct. Sci. 1986, 42, 61–68. [Google Scholar] [CrossRef]
- Li, D.; Ma, G.; Ge, J.; Hu, S.; Dai, N. Terahertz pulse shaping via birefringence in lithium niobate crystal. Appl. Phys. B 2008, 94, 623–628. [Google Scholar] [CrossRef]
- Tseng, K.; Wong, K.; Wong, G. Femtosecond time-resolved Z-scan investigations of optical nonlinearities in ZnSe. Opt. Lett. 1996, 21, 180–182. [Google Scholar] [CrossRef]
- Madelung, O.; Rössler, U.; Schulz, M. II-VI and I-VII compounds; Semimagnetic Compounds; Springer: Berlin/Heidelberg, Germany, 1999; Volume 41, pp. 1–5. [Google Scholar]
- Tatsuura, S.; Matsubara, T.; Mitsu, H.; Sato, Y.; Iwasa, I.; Tian, M.; Furuki, M. Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch. Appl. Phys. Lett. 2005, 87, 251110. [Google Scholar] [CrossRef]
- Liu, F.; Li, Y.; Xing, Q.; Chai, L.; Hu, M.; Wang, C.; Deng, Y.; Sun, Q.; Wang, C. Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm. J. Opt. 2010, 12, 095201. [Google Scholar] [CrossRef]
- Kulagin, I.A.; Ganeev, R.A.; Kim, V.A.; Ryasnyansky, A.I.; Tugushev, R.I.; Usmanov, T.; Zinoviev, A.V. Nonlinear refractive indices and third-order susceptibilities of nonlinear-optical crystals. In Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications II; Schepler, K.L., Lowenthal, D.D., Pierce, J.W., Eds.; SPIE: San Jose, CA, USA, 2003; p. 4972. [Google Scholar]
- Cornet, M.; Degert, J.; Abraham, E.; Freysz, E. Terahertz Kerr effect in gallium phosphide crystal. J. Opt. Soc. Am. B 2014, 31, 1648. [Google Scholar] [CrossRef] [Green Version]
- Hebling, J.; Hoffmann, M.C.; Yeh, K.L.; Tóth, G.; Nelson, K.A. Nonlinear lattice response observed through terahertz SPM. In Ultrafast Phenomena XVI; Springer: New York, NY, USA, 2009; pp. 651–653. [Google Scholar]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Van Stryland, E.W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Melnik, M.; Vorontsova, I.; Putilin, S.; Tcypkin, A.; Kozlov, S. Methodical inaccuracy of the Z-scan method for few-cycle terahertz pulses. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, C.P.; Liu, W.; Wu, J.W. Tunable terahertz optical bistability and multistability in photonic metamaterial multilayers containing nonlinear dielectric slab and graphene sheet. Appl. Phys. A 2020, 126, 1–8. [Google Scholar] [CrossRef]
- Kovalev, S.; Dantas, R.M.; Germanskiy, S.; Deinert, J.C.; Green, B.; Ilyakov, I.; Awari, N.; Chen, M.; Bawatna, M.; Ling, J.; et al. Non-perturbative terahertz high-harmonic generation in the three-dimensional Dirac semimetal Cd3As2. Nat. Commun. 2020, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hafez, H.A.; Kovalev, S.; Tielrooij, K.J.; Bonn, M.; Gensch, M.; Turchinovich, D. Terahertz Nonlinear Optics of Graphene: From Saturable Absorption to High-Harmonics Generation. Adv. Opt. Mater. 2020, 8, 1900771. [Google Scholar] [CrossRef] [Green Version]
Crystal | ω0 cm−1 | ω0/2π THz | n0 | nel | al cm ×10 −8 cm | m × 10−23 | αT × 10−6 °C−1 | S |
---|---|---|---|---|---|---|---|---|
ZnSe | 292 [11] | 8.7 | 2.97 [12] | 2.5 [13] | 5.67 [14] | 5.92 | 4.56 [15] | 5.27 [16] |
ZnTe | 253 [17] | 7.6 | 3.1 [18] | 2.85 [13] | 6.1 [19] | 7.2 | 8.21 [20] | 6.34 [16] |
CdTe | 141 [21] | 4.2 | 3.23 [22] | 2.95 [23] | 6.48 [19] | 9.98 | 5.0 [16] | 6.20 [16] |
GaP | 367 [24] | 11 | 3.31 [25] | 3.18 [23] | 5.45 [26] | 3.6 | 5.3 [16] | 4.13 [16] |
LiNbO3 (a) | 187 [27] | 5.6 | 5.15 [18] | 2.28 [28,29] | 5.15 [30] | 15 | 14.8 [16] | 4.64 [16] |
LiNbO3 (c) | 147 [27] | 4.4 | 6.7 [31] | 2.2 [28,29] | 13.9 [30] | 14 | 4.1 [16] | 4.64 [16] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhukova, M.; Melnik, M.; Vorontsova, I.; Tcypkin, A.; Kozlov, S. Estimations of Low-Inertia Cubic Nonlinearity Featured by Electro-Optical Crystals in the THz Range. Photonics 2020, 7, 98. https://doi.org/10.3390/photonics7040098
Zhukova M, Melnik M, Vorontsova I, Tcypkin A, Kozlov S. Estimations of Low-Inertia Cubic Nonlinearity Featured by Electro-Optical Crystals in the THz Range. Photonics. 2020; 7(4):98. https://doi.org/10.3390/photonics7040098
Chicago/Turabian StyleZhukova, Maria, Maksim Melnik, Irina Vorontsova, Anton Tcypkin, and Sergei Kozlov. 2020. "Estimations of Low-Inertia Cubic Nonlinearity Featured by Electro-Optical Crystals in the THz Range" Photonics 7, no. 4: 98. https://doi.org/10.3390/photonics7040098
APA StyleZhukova, M., Melnik, M., Vorontsova, I., Tcypkin, A., & Kozlov, S. (2020). Estimations of Low-Inertia Cubic Nonlinearity Featured by Electro-Optical Crystals in the THz Range. Photonics, 7(4), 98. https://doi.org/10.3390/photonics7040098