Image Encryption System Based on a Nonlinear Joint Transform Correlator for the Simultaneous Authentication of Two Users
Abstract
:1. Introduction
2. Encryption, Decryption, and Authentication Stages
2.1. Encryption Stage
2.2. Decryption and Authentication Stages
3. Computational Simulations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Javidi, B.; Carnicer, A.; Yamaguchi, M.; Nomura, T.; Pérez-Cabré, E.; Millán, M.; Nishchal, N.; Torroba, R.; Barrera, J.; He, W.; et al. Roadmap on optical security. J. Opt. 2016, 18, 083001. [Google Scholar] [CrossRef]
- Chen, W.; Javidi, B.; Chen, X. Advances in optical security systems. Adv. Opt. Photonics 2014, 6, 120–155. [Google Scholar] [CrossRef]
- Millán, M.S.; Pérez-Cabré, E. Optical data encryption. In Optical and Digital Image Processing: Fundamentals and Applications; Cristóbal, G., Schelkens, P., Thienpont, H., Eds.; Wiley-VCH Verlag GmbH & Co.: Hoboken, NJ, USA, 2011; pp. 739–767. [Google Scholar]
- Millán, M.S.; Pérez-Cabré, E.; Vilardy, J.M. Nonlinear techniques for secure optical encryption and multifactor authentication. In Advanced Secure Optical Image Processing for Communications; Al Falou, A., Ed.; IOP Publishing: Bristol, UK, 2018; pp. 8-1–8-33. [Google Scholar]
- Réfrégier, P.; Javidi, B. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 1995, 20, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.W. Introduction to Fourier Optics; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Nomura, T.; Javidi, B. Optical encryption using a joint transform correlator architecture. Opt. Eng. 2000, 39, 2031–2035. [Google Scholar]
- Rueda, E.; Barrera, J.F.; Henao, R.; Torroba, R. Optical encryption with a reference wave in a joint transform correlator architecture. Opt. Commun. 2009, 282, 3243–3249. [Google Scholar] [CrossRef]
- Rueda, E.; Barrera, J.F.; Henao, R.; Torroba, R. Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture. Opt. Eng. 2009, 48, 027006. [Google Scholar] [CrossRef]
- Barrera, J.F.; Rueda, E.; Rios, C.; Tebaldi, M.; Bolognini, N.; Torroba, R. Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality. Opt. Commun. 2011, 284, 4350–4355. [Google Scholar] [CrossRef]
- Barrera, J.F.; Tebaldi, M.; Rios, C.; Rueda, E.; Bolognini, N.; Torroba, R. Experimental multiplexing of encrypted movies using a JTC architecture. Opt. Express 2012, 20, 3388–3393. [Google Scholar] [CrossRef]
- Vilardy, J.M.; Millán, M.S.; Pérez-Cabré, E. Improved decryption quality and security of a joint transform correlator-based encryption system. J. Opt. 2013, 15, 025401. [Google Scholar] [CrossRef]
- Vilardy, J.M.; Millán, M.S.; Pérez-Cabré, E. Nonlinear optical security system based on a joint transform correlator in the Fresnel domain. Appl. Opt. 2014, 53, 1674–1682. [Google Scholar] [CrossRef] [Green Version]
- Vilardy, J.M.; Millán, M.S.; Pérez-Cabré, E. Joint transform correlator-based encryption system using the Fresnel transform and nonlinear filtering. Proc. SPIE 2013, 8785, 87853. [Google Scholar]
- Shen, X.; Lin, C.; Zou, X.; Cai, J. Nonlinear optical cryptosystem based on joint Fresnel transform correlator under vector wave illumination. J. Opt. 2015, 17, 055701. [Google Scholar]
- Barrera, J.F.; Jaramillo, A.; Vélez, A.; Torroba, R. Experimental analysis of a joint free space cryptosystem. Opt. Lasers Eng. 2016, 83, 126–130. [Google Scholar]
- Dou, S.; Shen, X.; Zhou, B.; Wang, L.; Lin, C. Experimental research on optical image encryption system based on joint Fresnel transform correlator. Opt. Laser Technol. 2019, 112, 56–64. [Google Scholar] [CrossRef]
- Vilardy, J.M.; Torres, Y.; Millán, M.S.; Pérez-Cabré, E. Generalized formulation of an encryption system based on a joint transform correlator and fractional Fourier transform. J. Opt. 2014, 16, 125405. [Google Scholar] [CrossRef]
- Vilardy, J.M.; Millán, M.S.; Pérez-Cabré, E. Sistema de cifrado de imágenes basado en un correlador de transformadas conjuntas fraccionario y filtrado no lineal. Opt. Pura Appl. 2014, 47, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Guo, Q.; Lei, L.; Zhou, J. Optical image encryption based on joint fractional transform correlator architecture and digital holography. Opt. Eng. 2013, 52, 048201. [Google Scholar] [CrossRef]
- Jaramillo, A.; Barrera, J.F.; Vélez, A.; Torroba, R. Fractional optical cryptographic protocol for data containers in a noise-free multiuser environment. Opt. Lasers Eng. 2018, 102, 119–125. [Google Scholar] [CrossRef]
- Vilardy, J.M.; Millán, M.S.; Pérez-Cabré, E. Nonlinear image encryption using a fully phase nonzero-order joint transform correlator in the Gyrator domain. Opt. Lasers Eng. 2017, 89, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Millán, M.S.; Pérez-Cabré, E.; Javidi, B. Multifactor authentication reinforces optical security. Opt. Lett. 2006, 31, 721–723. [Google Scholar] [CrossRef]
- Pérez-Cabré, E.; Millán, M.S.; Javidi, B. Near infrared multifactor identification tags. Opt. Express 2007, 15, 15615–15627. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cabré, E.; Mohammed, E.A.; Millán, M.S.; Saadon, H.L. Photon-counting multifactor optical encryption and authentication. J. Opt. 2015, 17, 025706. [Google Scholar] [CrossRef]
- Horrillo, S.; Pérez-Cabré, E.; Millán, M.S. Information compression for remote readable ID tags. J. Opt. 2010, 12, 115404. [Google Scholar] [CrossRef] [Green Version]
- Ahouzi, E.; Zamrani, W.; Azami, N.; Lizana, A.; Campos, J.; Yzuel, M.J. Optical triple random-phase encryption. Opt. Eng. 2017, 56, 113114. [Google Scholar] [CrossRef] [Green Version]
- Hai, H.; Pan, S.; Liao, M.; Lu, D.; He, W.; Peng, X. Cryptanalysis of random-phase-encoding-based optical cryptosystem via deep learning. Opt. Express 2019, 27, 21204–21213. [Google Scholar] [CrossRef] [PubMed]
- Towghi, N.; Javidi, B.; Luo, Z. Fully phase encrypted image processor. J. Opt. Soc. Am. A 1999, 16, 1915–1927. [Google Scholar] [CrossRef]
- Frauel, Y.; Castro, A.; Naughton, T.J.; Javidi, B. Resistance of the double random phase encryption against various attacks. Opt. Express 2007, 15, 10253–10265. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilardy O., J.M.; Millán, M.S.; Pérez-Cabré, E. Image Encryption System Based on a Nonlinear Joint Transform Correlator for the Simultaneous Authentication of Two Users. Photonics 2019, 6, 128. https://doi.org/10.3390/photonics6040128
Vilardy O. JM, Millán MS, Pérez-Cabré E. Image Encryption System Based on a Nonlinear Joint Transform Correlator for the Simultaneous Authentication of Two Users. Photonics. 2019; 6(4):128. https://doi.org/10.3390/photonics6040128
Chicago/Turabian StyleVilardy O., Juan M., María S. Millán, and Elisabet Pérez-Cabré. 2019. "Image Encryption System Based on a Nonlinear Joint Transform Correlator for the Simultaneous Authentication of Two Users" Photonics 6, no. 4: 128. https://doi.org/10.3390/photonics6040128
APA StyleVilardy O., J. M., Millán, M. S., & Pérez-Cabré, E. (2019). Image Encryption System Based on a Nonlinear Joint Transform Correlator for the Simultaneous Authentication of Two Users. Photonics, 6(4), 128. https://doi.org/10.3390/photonics6040128