# Comparative Modeling of Infrared Fiber Lasers

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

_{0}, N

_{1}, and N

_{2}is equal to the total doping concentration N

_{Dy}, and the coefficients a

_{mn}are given by

_{xa}is the absorption cross section for signal s, idler i, and pump p, whereas σ

_{xe}gives the respective values for the emission cross section. The photon flux is ϕ

_{x}for signal s, idler i, and pump p. The branching ratio is β

_{21}for the 2-1 transition (Figure 2), and τ

_{1}and τ

_{2}are the radiative lifetimes for levels 1 and 2, respectively (Figure 2). The rate Equation (1) is complemented by the set of six ordinary differential equations that describe the spatial evolution of the pump, idler, and signal powers for both the forward- and backward-propagating waves along the z axis:

_{x}is the confinement factor for signal s, idler i, and pump p; α gives the loss coefficient; and P

_{p}, P

_{s}, and P

_{i}are the values of the power of the pump, signal, and idler, respectively. The numeric values of the parameters are given in Table 1. A more rigorous approach, which does not use the confinement factor approximation, involves the exact calculation of the overlapping integrals between the ion populations and the electromagnetic field by taking into account the spatial distribution of the optical propagation modes:

_{d}is the rare earth-doped region and i

_{p}, i

_{s}, and i

_{i}are the normalized intensities of the pump, signal, and idler optical modes, respectively.

^{3+}energy level diagram in Figure 3, using the rate equations approach, one obtained consistently the following set of algebraic equations that enabled calculation of the populations of the energy levels:

_{0}, N

_{1}, N

_{2}, N

_{3}, and N

_{4}(Figure 3) is equal to the total doping concentration N

_{Er}. Note that τ

_{1}, τ

_{2}, τ

_{3}, and τ

_{4}are the lifetimes of levels 1, 2, 3, and 4, respectively, whereas β

_{xy}gives the branching ratios from level x to y. W

_{11}and W

_{22}are the cooperative upconversion coefficients for levels 1 and 2, respectively. R

_{GSA}gives the ground state absorption rate, R

_{SE}gives the rate of stimulated emission between levels 1 and 2, and R

_{ESA}gives the rate of the excited state absorption from level 2 to level 4:

_{2}= g

_{1}= 2. The values of the relevant cross sections σ

_{se}, σ

_{ESA}, and σ

_{GSA}, confinement factors Γ

_{x}, wavelengths λ

_{x}, effective cross section A

_{eff}, and Boltzmann factors b

_{x}are given in Table 2. Aligning the fiber with the z axis of the coordinate system enabled the following four differential equations to be written in the following form:

_{s}and P

_{p}are the powers of the signal and pump, respectively, and the superscripts + and − denote the forward- and backward-propagating waves, respectively. In Equation (9), α

_{x}gives the value of loss.

- The fiber laser model developed at the Institute of Photonics and Electronics of the Czech Academy of Sciences (UFE) was implemented in C programming language (gcc 4.9.2) within the Windows 7 operating system, 64 bit Intel core i7-3930K CPU at 3.2 GHz. The UFE model is currently being developed for the study of longitudinal-mode instabilities and associated buildup of dynamic fiber Bragg gratings [40].
- The fiber laser model developed at the Politecnico di Bari (PB) was implemented in MATLAB within the Windows 10 operating system, 64-bit Intel Core i7-4790 CPU at 3.6 GHz. The numerical integration was carried out using a 4-5 Runge–Kutta algorithm, and the more rigorous overlap integrals approach was employed.
- The fiber laser model developed at the University of Nottingham and Wroclaw University of Science and Technology (NU–PWr) was implemented in MATLAB within the Windows 10 operating system, 64 bit Intel Core i5 7th Generation, CPU at 2.5 GHz. The numerical integration was carried out using a 4-5 Runge–Kutta algorithm.

## 3. Results

^{−34}J·s and the value of the speed of light in free space of 2.99792458 × 10

^{8}m/s were used.

^{3+}-doped chalcogenide–selenide glass fiber laser, for the results calculated using the UFE and NU–PWr models, the relative difference, defined as the ratio between the absolute value of the difference and half of the sum of the results, was then less than 0.2% for the signal and below 0.22% for the idler wave at pump powers of 1 W and 5 W, respectively. In the case of the idler wave, the small values of the idler wave power for pump powers of 0.4 W and 0.2 W made it difficult to achieve small values of the relative difference. Nonetheless, these results consistently indicated that the idler was below the lasing threshold. In the case of the Er

^{3+}-doped fluoride glass fiber laser, both the NU–PWr and UFE models calculated results that agreed on all four digits. It is noted that the results shown in Table 4, Table 5 and Table 6 were rounded to the nearest decimal.

## 4. Conclusions

^{3+}-doped chalcogenide–selenide step-index glass fiber and in the case of the Er

^{3+}-doped fluoride glass fiber lasers, a very good agreement was achieved between the results calculated using the UFE and NU–PWr models.

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Schneider, J.; Carbonnier, C.; Unrau, U.B. Characterization of a Ho
^{3+}-doped fluoride fiber laser with a 3.9-mm emission wavelength. Appl. Opt.**1997**, 36, 8595–8600. [Google Scholar] [CrossRef] [PubMed] - Majewski, M.R.; Woodward, R.I.; Carreé, J.-Y.; Poulain, S.; Poulain, M.; Jackson, S.D. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride InF
_{3}fiber. Opt. Lett.**2018**, 43, 1926–1929. [Google Scholar] [CrossRef] [PubMed] - Maes, F.; Fortin, V.; Poulain, S.; Poulain, M.; Carrée, J.-Y.; Bernier, M.; Vallée, R. Room temperature fiber laser at 3.92 mm. arXiv
**2018**, arXiv:1804.08610. [Google Scholar] - Písařík, M.; Peterka, P.; Aubrecht, J.; Cajzl, J.; Benda, A.; Mareš, D.; Todorov, F.; Podrazký, O.; Honzátko, P.; Kašík, I. Thulium-doped fibre broadband source for spectral region near 2 micrometers. Opto-Electron. Rev.
**2016**, 24, 223–231. [Google Scholar] [CrossRef] - Tokita, S.; Murakami, M.; Shimizu, S.; Hashida, M.; Sakabe, S. Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser. Opt. Lett.
**2009**, 34, 3062–3064. [Google Scholar] [CrossRef] [PubMed] - Henderson-Sapir, O.; Jackson, S.D.; Ottaway, D.J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser. Opt. Lett.
**2016**, 41, 1676–1679. [Google Scholar] [CrossRef] [PubMed] - Henderson-Sapir, O.; Malouf, A.; Bawden, N.; Munch, J.; Jackson, S.D.; Ottaway, D.J. Recent Advances in 3.5 mm Erbium-Doped Mid-Infrared Fiber Lasers. IEEE J. Sel. Top. Quantum Electron.
**2017**, 23, 6–14. [Google Scholar] [CrossRef] - Henderson-Sapir, O.; Munch, J.; Ottaway, D.J. New energy-transfer upconversion process in Er
^{3+}: ZBLAN mid-infrared fiber lasers. Opt. Express**2016**, 24, 6869–6883. [Google Scholar] [CrossRef] [PubMed] - Malouf, A.; Henderson-Sapir, O.; Gorjan, M.; Ottaway, D.J. Numerical Modeling of 3.5 mm Dual-Wavelength Pumped Erbium-Doped Mid-Infrared Fiber Lasers. IEEE J. Quantum Electron.
**2016**, 52, 1600412. [Google Scholar] [CrossRef] - Lamrini, S.; Scholle, K.; Schäfer, M.; Fuhrberg, P.; Ward, J.; Francis, M.; Sujecki, S.; Oladeji, A.; Napier, B.; Seddon, A.B.; et al. High-Energy Q-switched Er:ZBLAN Fibre Laser at 2.79 mm. In Proceedings of the CLEO/Europe-EQEC OSA, Munich, Germany, 21–25 June 2015. [Google Scholar]
- Li, J.F.; Jackson, S.D. Numerical Modeling and Optimization of Diode Pumped Heavily-Erbium-Doped Fluoride Fiber Lasers. IEEE J. Quantum Electron.
**2012**, 48, 454–464. [Google Scholar] [CrossRef] - Majewski, M.R.; Jackson, S.D. Highly efficient mid-infrared dysprosium fiber laser. Opt. Lett.
**2016**, 41, 2173–2176. [Google Scholar] [CrossRef] [PubMed] - Sakr, H.; Furniss, D.; Tang, Z.; Sojka, L.; Moneim, N.A.; Barney, E.; Sujecki, S.; Benson, T.M.; Seddon, A.B. Superior photoluminescence (PL) of Pr
^{3+}-In, compared to Pr^{3+}-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber. Opt. Express**2014**, 22, 21236–21252. [Google Scholar] [CrossRef] [PubMed] - Sakr, H.; Tang, Z.Q.; Furniss, D.; Sojka, L.; Sujecki, S.; Benson, T.M.; Seddon, A.B. Promising emission behavior in Pr
^{3+}/In selenide-chalcogenide-glass small-core step index fiber (SIF). Opt. Mater.**2017**, 67, 98–107. [Google Scholar] [CrossRef] - Seddon, A.B.; Furniss, D.; Tang, Z.Q.; Sojka, L.; Benson, T.M.; Caspary, R.; Sujecki, S. True Mid-Infrared Pr
^{3+}Absorption Cross-Section in a Selenide-Chalcogenide Host-Glass. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks, Trento, Italy, 10–14 July 2016. [Google Scholar] - Seddon, A.B.; Tang, Z.; Furniss, D.; Sujecki, S.; Benson, T.M. Progress in rare-earth-doped mid-infrared fiber lasers. Opt. Express
**2010**, 18, 26704–26719. [Google Scholar] [CrossRef] [PubMed] - Sojka, L.; Tang, Z.; Furniss, D.; Sakr, H.; Beres-Pawlik, E.; Seddon, A.B.; Benson, T.M.; Sujecki, S. Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr
^{3+}doped chalcogenide fibre. Opt. Quantum Electron.**2017**, 49, 21. [Google Scholar] [CrossRef] - Sojka, L.; Tang, Z.; Furniss, D.; Sakr, H.; Fang, Y.; Beres-Pawlik, E.; Benson, T.M.; Seddon, A.B.; Sujecki, S. Mid-infrared emission in Tb
^{3+}-doped selenide glass fiber. J. Opt. Soc. Am. B Opt. Phys.**2017**, 34, A70–A79. [Google Scholar] [CrossRef] - Sojka, L.; Tang, Z.; Furniss, D.; Sakr, H.; Oladeji, A.; Beres-Pawlik, E.; Dantanarayana, H.; Faber, E.; Seddon, A.B.; Benson, T.M.; et al. Broadband, mid-infrared emission from Pr
^{3+}doped GeAsGaSe chalcogenide fiber, optically clad. Opt. Mater.**2014**, 36, 1076–1082. [Google Scholar] [CrossRef] - Sojka, L.; Tang, Z.; Zhu, H.; Beres-Pawlik, E.; Furniss, D.; Seddon, A.B.; Benson, T.M.; Sujecki, S. Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy
^{3+}, Pr^{3+}and Tb^{3+}. Opt. Mater. Express**2012**, 2, 1632–1640. [Google Scholar] [CrossRef] - Tang, Z.; Furniss, D.; Fay, M.; Sakr, H.; Sojka, L.; Neate, N.; Weston, N.; Sujecki, S.; Benson, T.M.; Seddon, A.B. Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass. Opt. Mater. Express
**2015**, 5, 870–886. [Google Scholar] [CrossRef] - Tang, Z.; Neate, N.C.; Furniss, D.; Sujecki, S.; Benson, T.M.; Seddon, A.B. Crystallization behavior of Dy
^{3+}-doped selenide glasses. J. Non-Cryst. Solids**2011**, 357, 2453–2462. [Google Scholar] [CrossRef] - Tang, Z.Q.; Shiryaev, V.S.; Furniss, D.; Sojka, L.; Sujecki, S.; Benson, T.M.; Seddon, A.B.; Churbanov, M.F. Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics. Opt. Mater. Express
**2015**, 5, 1722–1737. [Google Scholar] [CrossRef] - Churbanov, M.F.; Scripachev, I.V.; Shiryaev, V.S.; Plotnichenko, V.G.; Smetanin, S.V.; Kryukova, E.B.; Pyrkov, Y.N.; Galagan, B.I. Chalcogenide glasses doped with Tb, Dy and Pr ions. J. Non-Cryst. Solids
**2003**, 326, 301–305. [Google Scholar] [CrossRef] - Karaksina, E.V.; Shiryaev, V.S.; Churbanov, M.F.; Anashkina, E.A.; Kotereva, T.V.; Snopatin, G.E. Core-clad Pr
^{3+}-doped Ga(In)-Ge-As-Se-(I) glass fibers: Preparation, investigation, simulation of laser characteristics. Opt. Mater.**2017**, 72, 654–660. [Google Scholar] [CrossRef] - Karaksina, E.V.; Shiryaev, V.S.; Kotereva, T.V.; Churbanov, M.F. Preparation of high-purity Pr
^{3+}doped Ge-Ga-Sb-Se glasses with intensive middle infrared luminescence. J. Lumin.**2016**, 170, 37–41. [Google Scholar] [CrossRef] - Shiryaev, V.S.; Karaksina, E.V.; Kotereva, T.V.; Churbanov, M.F.; Velmuzhov, A.P.; Sukhanov, M.V.; Ketkova, L.A.; Zernova, N.S.; Plotnichenko, V.G.; Koltashev, V.V. Preparation and investigation of Pr
^{3+}-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics. J. Lumin.**2017**, 183, 129–134. [Google Scholar] [CrossRef] - Quimby, R.S.; Shaw, L.B.; Sanghera, J.S.; Aggarwal, I.D. Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm. IEEE Photonics Technol. Lett.
**2008**, 20, 123–125. [Google Scholar] [CrossRef] - Sanghera, J.S.; Shaw, L.B.; Aggarwal, I.D. Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications. IEEE J. Sel. Top. Quantum Electron.
**2009**, 15, 114–119. [Google Scholar] [CrossRef] - Shaw, L.B.; Cole, B.; Thielen, P.A.; Sanghera, J.S.; Aggarwal, I.D. Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber. IEEE J. Quantum Electron.
**2001**, 37, 1127–1137. [Google Scholar] [CrossRef] - Falconi, M.C.; Palma, G.; Starecki, F.; Nazabal, V.; Troles, J.; Adam, J.L.; Taccheo, S.; Ferrari, M.; Prudenzano, F. Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission. J. Light. Technol.
**2017**, 35, 265–273. [Google Scholar] [CrossRef] [Green Version] - Falconi, M.C.; Palma, G.; Starecki, F.; Nazabal, V.; Troles, J.; Taccheo, S.; Ferrari, M.; Prudenzano, F. Design of an Efficient Pumping Scheme for Mid-IR Dy
^{3+}:Ga_{5}Ge_{20}Sb_{10}S_{65}PCF Fiber Laser. IEEE Photonics Technol. Lett.**2016**, 28, 1984–1987. [Google Scholar] [CrossRef] - Moizan, V.; Nazabal, V.; Troles, J.; Houizot, P.; Adam, J.-L.; Doualan, J.-L.; Moncorge, R.; Smektala, F.; Gadret, G.; Pitois, S.; et al. Er
_{3+}-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy. Opt. Mater.**2008**, 31, 39–46. [Google Scholar] [CrossRef] - Pele, A.L.; Braud, A.; Doualan, J.L.; Starecki, F.; Nazabal, V.; Chahal, R.; Boussard-Pledel, C.; Bureau, B.; Moncorge, R.; Camy, P. Dy
^{3+}doped GeGaSbS fluorescent fiber at 4.4 mm for optical gas sensing: Comparison of simulation and experiment. Opt. Mater.**2016**, 61, 37–44. [Google Scholar] [CrossRef] - Starecki, F.; Morais, S.; Chahal, R.; Boussard-Pledel, C.; Bureau, B.; Palencia, F.; Lecoutre, C.; Garrabos, Y.; Marre, S.; Nazabal, V. IR emitting Dy
^{3+}doped chalcogenide fibers for in situ CO_{2}monitoring in high pressure microsystems. Int. J. Greenh. Gas Control**2016**, 55, 36–41. [Google Scholar] [CrossRef] - Sujecki, S. An Efficient Algorithm for Steady State Analysis of Fibre Lasers Operating under Cascade Pumping Scheme. Int. J. Electron. Telecommun.
**2014**, 60, 143–149. [Google Scholar] [CrossRef] - Sujecki, S. Numerical Analysis of Q-Switched Erbium Ion Doped Fluoride Glass Fiber Laser Operation Including Spontaneous Emission. Appl. Sci.
**2018**, 8, 803. [Google Scholar] [CrossRef] - Sujecki, S.; Sojka, L.; Beres-Pawlik, E.; Tang, Z.; Furniss, D.; Seddon, A.B.; Benson, T.M. Modelling of a simple Dy
^{3+}doped chalcogenide glass fibre laser for mid-infrared light generation. Opt. Quantum Electron.**2010**, 42, 69–79. [Google Scholar] [CrossRef] - Falconi, M.C.; Palma, G.; Starecki, F.; Nazabal, V.; Troles, J.; Adam, J.L.; Taccheo, S.; Ferrari, M.; Prudenzano, F. Novel Pumping Schemes of Mid-IR Photonic Crystal Fiber Lasers for Aerospace Applications. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks, Trento, Italy, 10–14 July 2016. [Google Scholar]
- Peterka, P.; Koška, P.; Čtyroký, J. Reflectivity of superimposed Bragg gratings induced by longitudinal mode instabilities in fiber lasers. IEEE J. Sel. Top. Quantum Electron.
**2018**, 24, 1–8. [Google Scholar] [CrossRef] - Falconi, M.C.; Palma, G.; Starecki, F.; Nazabal, V.; Troles, J.; Adam, J.L.; Taccheo, S.; Ferrari, M.; Prudenzano, F. Recent Advances on Pumping Schemes for Mid-IR PCF Lasers. In Optical Components and Materials XIV; Jiang, S., Digonnet, M.J.F., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 10100. [Google Scholar]
- Khamis, M.A.; Sevilla, R.; Ennser, K. Large Mode Area Pr
^{3+}-Doped Chalcogenide PCF Design for High Efficiency Mid-IR Laser. IEEE Photonics Technol. Lett.**2018**, 30, 825–828. [Google Scholar] [CrossRef] - Hu, J.; Menyuk, C.R.; Wei, C.L.; Shaw, L.B.; Sanghera, J.S.; Aggarwal, I.D. Highly efficient cascaded amplification using Pr
^{3+}-doped mid-infrared chalcogenide fiber amplifiers. Opt. Lett.**2015**, 40, 3687–3690. [Google Scholar] [CrossRef] [PubMed] - Anashkina, E.A. Design and Numerical Modeling of Broadband Mid-IR Rare-Earth-Doped Chalcogenide Fiber Amplifiers. IEEE Photonics Technol. Lett.
**2018**, 30, 1190–1193. [Google Scholar] [CrossRef] - Falconi, M.C.; Bozzetti, M.; Fernandez, T.; Galzerano, G.; Prudenzano, F. Design of an Efficient Pulsed Dy
^{3+}: ZBLAN Fiber Laser Operating in Gain Switching Regime. J. Light. Technol.**2018**, 36, 5327–5331. [Google Scholar] [CrossRef]

**Figure 4.**Dependence of the residual calculated using the Institute of Photonics and Electronics of the Czech Academy of Sciences (UFE) model at z = 0, and the central processing unit (CPU) time of the iteration number at a pump power of: (

**a**) 5 W, (

**b**) 1 W, (

**c**) 0.4 W, and (

**d**) 0.2 W.

**Figure 5.**Dependence of the residual calculated using the Politecnico di Bari (PB) model at z = 0, and CPU time of the iteration number at a pump power of (

**a**) 5 W, (

**b**) 1 W, (

**c**) 0.4 W, and (

**d**) 0.2 W.

**Figure 6.**Dependence of the residual, calculated using the University of Nottingham and Wroclaw University of Science and Technology (NU–PWr) model at z = 0, and CPU time on the iteration number at a pump power of (

**a**) 5 W, (

**b**) 1 W, (

**c**) 0.4 W, and (

**d**) 0.2 W.

**Table 1.**Numerical modeling parameters used in simulations, Dy

^{3+}-doped chalcogenide glass fiber laser.

Quantity | Unit | Value |
---|---|---|

Dy^{3+} ion concentration N_{Dy} | cm^{−3} | 7 × 10^{19} |

A_{eff} | m^{2} | 95 × 10^{−12} |

Fiber length L | m | 2.1 |

Fiber loss at all wavelengths α | dB/m | 1 |

Lifetime of level 2 (Figure 2) | ms | 2 |

Lifetime of level 1 (Figure 2) | ms | 5.2 |

Branching ratio for 2-1 transitions | 0.15 | |

Reflectivity for idler, signal, and pump at z = 0 | 0.2 | |

Reflectivity for idler, signal, and pump at z = L | 0.2 | |

Confinement factor for signal | 0.8 | |

Confinement factor for idler | 0.9 | |

Confinement factor for pump | 0.034 | |

Pump wavelength | μm | 1.71 |

Signal wavelength (λ_{1}) | μm | 4.6 |

Idler wavelength (λ_{2}) | μm | 3.35 |

Pump emission cross section | m^{2} | 0.318 × 10^{−24} |

Pump absorption cross section | m^{2} | 0.501 × 10^{−24} |

Signal emission cross section | m^{2} | 0.912 × 10^{−24} |

Signal absorption cross section | m^{2} | 0.485 × 10^{−24} |

Idler emission cross section | m^{2} | 0.097 × 10^{−24} |

Idler absorption cross section | m^{2} | 0.016 × 10^{−24} |

Quantity | Unit | Value |
---|---|---|

b_{1}/b_{2} | 0.1/0.16 | |

W_{11} | m^{3}/s | 1 × 10^{−24} |

W_{22} | m^{3}/s | 0.3 × 10^{−24} |

σ_{GSA} | m^{2} | 2.1 × 10^{−25} |

σ_{SE} | m^{2} | 4.5 × 10^{−25} |

σ_{ESA} | m^{2} | 1.1 × 10^{−25} |

Γ_{p} | 0.009 | |

Γ_{s} | 1.0 | |

Er^{3+} ion concentration N_{Er} | m^{−3} | 9.6 × 10^{26} |

Pump wavelength λ_{p} | Nm | 976 |

Pump wavelength λ_{s} | Nm | 2800 |

Fiber length L | m | 2.5 |

A_{eff} | m^{2} | 314 × 10^{−12} |

α_{p} | 1/m | 3 × 10^{−3} |

α_{s} | 1/m | 23 × 10^{−3} |

R_{p} (z = 0) | 0 | |

R_{p} (z = L) | 0.04 | |

R_{s} (z = 0) | 0.96 | |

R_{s} (z = L) | 0.04 |

**Table 3.**Branching ratios and level lifetimes for erbium trivalent ions doped into a fluoride glass.

Quantity | Unit | Value |
---|---|---|

τ_{1} | ms | 9 |

τ_{2} | ms | 6.9 |

τ_{3} | ms | 0.12 |

τ_{4} | ms | 0.57 |

β_{21}, β_{20} | 0.37, 0.63 | |

β_{32}, β_{31}, β_{30} | 0.856, 0.004, 0.14 | |

β_{43}, β_{42}, β_{41}, β_{40} | 0.34, 0.04, 0.18, 0.44 |

**Table 4.**Calculated values of signal output power values for the Dy

^{3+}-doped chalcogenide–selenide glass fiber laser.

Pump Power/W | Signal Power (NU–PWr)/W | Signal Power (UFE)/W | Relative Difference |
---|---|---|---|

0.2 | 4.733 × 10^{−3} | 4.731 × 10^{−3} | 0.422 × 10^{−3} |

0.4 | 8.744 × 10^{−3} | 8.736 × 10^{−3} | 0.915 × 10^{−3} |

1 | 49.13 × 10^{−3} | 49.04 × 10^{−3} | 1.833 × 10^{−3} |

5 | 319.1 × 10^{−3} | 318.6 × 10^{−3} | 1.568 × 10^{−3} |

**Table 5.**Calculated values of the idler output power values for the Dy

^{3+}-doped chalcogenide–selenide glass fiber laser.

Pump Power/W | Idler Power (NU–PWr)/W | Idler Power (UFE)/W | Relative Difference |
---|---|---|---|

0.2 W | 0 W | 4.140 × 10^{−6} | NA |

0.4 W | 0 W | 9.591 × 10^{−4} | NA |

1 W | 55.38 × 10^{−3} W | 55.26 × 10^{−3} | 2.169 × 10^{−3} |

5 W | 426.0 × 10^{−3} W | 425.4 × 10^{−3} | 1.409 × 10^{−3} |

**Table 6.**Calculated values of signal output power values for the Er

^{3+}ion-doped fluoride glass fiber laser.

Pump Power | Signal Power (NU–PWr)/W | Signal Power (UFE)/W | Relative Difference |
---|---|---|---|

5 W | 1.432 | 1.432 | 0 |

10 W | 3.171 | 3.171 | 0 |

15 W | 4.868 | 4.868 | 0 |

20 W | 6.458 | 6.458 | 0 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sujecki, S.; Sojka, L.; Seddon, A.B.; Benson, T.M.; Barney, E.; Falconi, M.C.; Prudenzano, F.; Marciniak, M.; Baghdasaryan, H.; Peterka, P.;
et al. Comparative Modeling of Infrared Fiber Lasers. *Photonics* **2018**, *5*, 48.
https://doi.org/10.3390/photonics5040048

**AMA Style**

Sujecki S, Sojka L, Seddon AB, Benson TM, Barney E, Falconi MC, Prudenzano F, Marciniak M, Baghdasaryan H, Peterka P,
et al. Comparative Modeling of Infrared Fiber Lasers. *Photonics*. 2018; 5(4):48.
https://doi.org/10.3390/photonics5040048

**Chicago/Turabian Style**

Sujecki, Slawomir, Lukasz Sojka, Angela B. Seddon, Trevor M. Benson, Emma Barney, Mario C. Falconi, Francesco Prudenzano, Marian Marciniak, Hovik Baghdasaryan, Pavel Peterka,
and et al. 2018. "Comparative Modeling of Infrared Fiber Lasers" *Photonics* 5, no. 4: 48.
https://doi.org/10.3390/photonics5040048