Hairy Polydopamine Particles as Platforms for Photonic and Magnetic Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
2.3. Synthesis of DA-BiBB Solution
2.4. Preparation of ATRP Initiator-Bearing PDA Particles
2.5. Preparation of Hairy PDA Particles
2.6. Preparation of Magnetic Hairy PDA Particles
2.7. Production of Structural Colors from the Assembly of Particles
3. Results and Discussion
3.1. Preparation of ATRP Initiator-Bearing PDA Particles
3.2. Control of Structural Colors
3.3. Control of Magnetic Behaviors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Paquet, C.; Kumacheva, E. Nanostructured polymers for photonics. Mater. Today 2008, 11, 48–56. [Google Scholar] [CrossRef]
- Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 2017, 11, 465–476. [Google Scholar] [CrossRef]
- Staude, I.; Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photonics 2017, 11, 274–284. [Google Scholar] [CrossRef]
- Kolle, M.; Lee, S. Progress and opportunities in soft photonics and biologically inspired optics. Adv. Mater. 2018, 30, 1702669. [Google Scholar] [CrossRef] [PubMed]
- Isapour, G.; Lattuada, M. Bioinspired stimuli-responsive color-changing systems. Adv. Mater. 2018, 30, 1707069. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz Hedayati, M.; Elbahri, M. Review of metasurface plasmonic structural color. Plasmonics 2017, 12, 1463. [Google Scholar] [CrossRef]
- Goerlitzer, E.S.A.; Taylor, R.N.K.; Vogel, N. Bioinspired photonic pigments from colloidal self-assembly. Adv. Mater. 2018, 30, 1706654. [Google Scholar] [CrossRef] [PubMed]
- Forster, J.D.; Noh, H.; Liew, S.F.; Saranathan, V.; Schreck, C.F.; Yang, L.; Park, J.G.; Prum, R.O.; Mochrie, S.G.J.; O’Hern, C.S.; et al. Biomimetic isotropic nanostructures for structural coloration. Adv. Mater. 2010, 22, 2939–2944. [Google Scholar] [CrossRef] [PubMed]
- Takeoka, Y.; Yoshioka, S.; Takano, A.; Arai, S.; Nueangnoraj, K.; Nishihara, H.; Teshima, M.; Ohtsuka, Y.; Seki, T. Production of colored pigments with amorphous arrays of black and white colloidal particles. Angew. Chem. Int. Ed. 2013, 52, 7261–7265. [Google Scholar] [CrossRef] [PubMed]
- Takeoka, Y. Environment and human friendly colored materials prepared using black and white components. Chem. Commun. 2018, 54, 4905–4914. [Google Scholar] [CrossRef] [PubMed]
- Kohri, M.; Nannichi, Y.; Taniguchi, T.; Kishikawa, K. Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules. J. Mater. Chem. C 2015, 3, 720–724. [Google Scholar]
- Kawamura, A.; Kohri, M.; Morimoto, G.; Nannichi, Y.; Taniguchi, T.; Kishikawa, K. Full-color biomimetic photonic materials with iridescent and non-iridescent structural colors. Sci. Rep. 2016, 6, 33984. [Google Scholar] [PubMed]
- Kawamura, A.; Kohri, M.; Yoshioka, S.; Taniguchi, T.; Kishikawa, K. Structural color tuning: Mixing melanin-like particles with different diameters to create neutral colors. Langmuir 2017, 33, 3824–3830. [Google Scholar] [CrossRef] [PubMed]
- Kohri, M.; Yamazaki, S.; Kawamura, A.; Taniguchi, T.; Kishikawa, K. Bright structural color films independent of background prepared by the dip-coating of biomimetic melanin-like particles having polydopamine shell layers. Colloids Surf. A 2017, 532, 564–569. [Google Scholar] [CrossRef]
- Kohri, M.; Yanagimoto, K.; Kawamura, A.; Hamada, K.; Imai, Y.; Watanabe, T.; Ono, T.; Taniguchi, T.; Kishikawa, K. Polydopamine-based 3D structural color materials: Spherical photonic balls and fibers from melanin-like particles having polydopamine shell layers. ACS Appl. Mater. Interfaces 2018, 10, 7640–7648. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, S.; Kinoshita, S. Effect of macroscopic structure in iridescent color of the peacock feathers. Forma 2002, 17, 169–181. [Google Scholar]
- Zi, J.; Yu, X.; Li, Y.; Hu, X.; Xu, C.; Wang, X.; Liu, X.; Fu, R. Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci. USA 2003, 100, 12576–12578. [Google Scholar] [PubMed] [Green Version]
- Kawaguchi, H. Functional polymer microspheres. Prog. Polym. Sci. 2000, 25, 1171–1210. [Google Scholar] [CrossRef]
- Zhao, B.; Brittain, W.J. Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 2000, 25, 677–710. [Google Scholar] [CrossRef]
- Chevigny, P.C.; Dalmas, F.; Cola, E.D.; Gigmes, D.; Bertin, D.; Boué, F.; Jestin, J. Polymer-grafted-nanoparticles nanocomposites: Dispersion, grafted chain conformation, and rheological behavior. Macromolecules 2011, 44, 122–133. [Google Scholar] [CrossRef]
- Kawamura, A.; Kohri, M.; Taniguchi, T.; Kishikawa, K. Surface modification of polydopamine particles via magnetically-responsive surfactants. Trans. Mater. Res. Soc. Jpn. 2016, 41, 301–304. [Google Scholar] [CrossRef]
- Kohri, M.; Yanagimoto, K.; Kohaku, K.; Shiomoto, S.; Kobayashi, M.; Imai, A.; Shiba, F.; Taniguchi, T.; Kishikawa, K. Magnetically responsive polymer network constructed by poly(acrylic acid) and holmium. Macromolecules 2018, 51, 6740–6745. [Google Scholar] [CrossRef]
- Kohri, M.; Sato, M.; Abo, F.; Inada, T.; Kasuya, M.; Taniguchi, T.; Nakahira, T. Preparation and lectin binding specificity of polystyrene particles grafted with glycopolymers bearing S-linked carbohydrates. Eur. Polym. J. 2011, 47, 2351–2360. [Google Scholar] [CrossRef]
- Kohri, M.; Kobayashi, A.; Fukushima, H.; Kojima, T.; Taniguchi, T.; Saito, K.; Nakahira, T. Enzymatic miniemulsion polymerization of styrene with a polymerizable surfactant. Polym. Chem. 2012, 3, 900–906. [Google Scholar] [CrossRef]
- Kohri, M.; Kohma, H.; Shinoda, Y.; Yamauchi, M.; Yagai, S.; Kojima, T.; Taniguchi, T.; Kishikawa, K. A colorless functional polydopamine thin layer as a basis for polymer capsules. Polym. Chem. 2013, 4, 2696–2702. [Google Scholar] [CrossRef]
- Kohri, M.; Shinoda, Y.; Kohma, H.; Nannichi, Y.; Yamauchi, M.; Yagai, S.; Kojima, T.; Taniguchi, T.; Kishikawa, K. Facile synthesis of free-standing polymer brush films based on a colorless polydopamine thin layer. Macromol. Rapid Commun. 2013, 34, 1220–1224. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Yin, Y. Responsive photonic crystals. Angew. Chem. Int. Ed. 2011, 50, 1492–1522. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Hu, Y.; Yin, Y. Highly tunable superparamagnetic colloidal photonic crystals. Angew. Chem. Int. Ed. 2007, 46, 7428–7431. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Hu, Y.; Zhang, T.; Huynh, T.; Yin, Y. Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 2008, 24, 3671–3680. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Yin, Y. Magnetically tunable colloidal photonic structures in alkanol solutions. Adv. Mater. 2008, 20, 3485–3491. [Google Scholar] [CrossRef]
- Kim, H.; Ge, J.; Kim, J.; Choi, S.; Lee, H.; Lee, H.; Park, W.; Yin, Y.; Kwon, S. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat. Photon. 2009, 3, 534–540. [Google Scholar] [CrossRef]
- Ge, J.; He, L.; Goebl, J.; Yin, Y. Assembly of magnetically tunable photonic crystals in nonpolar solvents. J. Am. Chem. Soc. 2009, 131, 3484–3486. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gu, H.; Xie, Z.; Shum, H.C.; Wang, B.; Gu, Z. Bioinspired multifunctional Janus particles for droplet manipulation. J. Am. Chem. Soc. 2013, 135, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Zhao, Y.; Zhong, H.; Liang, J.; Zhou, J.; Shen, H. Hydrophilic magnetochromatic nanoparticles with controllable sizes and super-high magnetization for visualization of magnetic field intensity. Sci. Rep. 2015, 23, 17063. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.J.; Björnmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, 6233. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Zhang, Q.; Wang, H.; Li, Y. Fabrication of magnetic field induced structural colored films with tunable colors and its application on security materials. J Colloid Interface Sci. 2017, 485, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Teshima, M.; Seki, T.; Takeoka, Y. Simple preparation of magnetic field-responsive structural colored Janus particles. Chem. Commun. 2018, 54, 2607–2610. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohri, M.; Uradokoro, K.; Nannichi, Y.; Kawamura, A.; Taniguchi, T.; Kishikawa, K. Hairy Polydopamine Particles as Platforms for Photonic and Magnetic Materials. Photonics 2018, 5, 36. https://doi.org/10.3390/photonics5040036
Kohri M, Uradokoro K, Nannichi Y, Kawamura A, Taniguchi T, Kishikawa K. Hairy Polydopamine Particles as Platforms for Photonic and Magnetic Materials. Photonics. 2018; 5(4):36. https://doi.org/10.3390/photonics5040036
Chicago/Turabian StyleKohri, Michinari, Kanako Uradokoro, Yuri Nannichi, Ayaka Kawamura, Tatsuo Taniguchi, and Keiki Kishikawa. 2018. "Hairy Polydopamine Particles as Platforms for Photonic and Magnetic Materials" Photonics 5, no. 4: 36. https://doi.org/10.3390/photonics5040036
APA StyleKohri, M., Uradokoro, K., Nannichi, Y., Kawamura, A., Taniguchi, T., & Kishikawa, K. (2018). Hairy Polydopamine Particles as Platforms for Photonic and Magnetic Materials. Photonics, 5(4), 36. https://doi.org/10.3390/photonics5040036