# External Control of Dissipative Coupling in a Heterogeneously Integrated Photonic Crystal—SOI Waveguide Optomechanical System

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Device Fabrication

#### 2.2. Photonic Crystal Design

## 3. Results

#### 3.1. System Description

#### 3.2. QDs Response to a Non-Resonant Optical Pump

#### 3.3. Optomechanical Transduction of Non-Resonant Pump

#### 3.4. Tailored Optomechanical Couplings

## 4. Discussion and Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Abbreviations

CW | continuous wave |

EBL | electron beam lithography |

FDTD | finite difference in time domain |

FWHM | full width at half maximum |

InAs(P) | indium arsenide phosphide |

InGaAs | indium gallium arsenide |

InP | indium phosphide |

PhC | photonic crystal |

$\mathsf{\mu}$PL | micro-photoluminescence |

Si | silicon |

${\mathrm{SiO}}_{2}$ | silicon dioxide |

QD | quantum dot |

SOI | silicon-on-insulator |

## References

- Aspelmeyer, M.; Kippenberg, T.J. Cavity Optomechanics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Li, M.; Pernice, W.H.P.; Tang, H.X. Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides. Phys. Rev. Lett.
**2009**, 103, 223901. [Google Scholar] [CrossRef] [PubMed] - Wu, M.; Hryciw, A.C.; Healey, C.; Lake, D.P.; Jayakumar, H.; Freeman, M.R.; Davis, J.P.; Barclay, P.E. Dissipative and dispersive optomechanics in a nanocavity torque sensor. Phys. Rev. X
**2014**, 4, 021052. [Google Scholar] [CrossRef] - Sawadsky, A.; Kaufer, H.; Nia, R.M.; Tarabrin, S.P.; Khalili, F.Y.; Hammerer, K.; Schnabel, R. Observation of generalized optomechanical coupling and cooling on cavity resonance. Phys. Rev. Lett.
**2015**, 114, 043601. [Google Scholar] [CrossRef] [PubMed] - Hryciw, A.C.; Wu, M.; Khanaliloo, B.; Barclay, P.E. Tuning of nanocavity optomechanical coupling using a near-field fiber probe. Optica
**2015**, 2, 491–496. [Google Scholar] [CrossRef] - Tsvirkun, V.; Surrente, A.; Raineri, F.; Beaudoin, G.; Raj, R.; Sagnes, I.; Robert-Philip, I.; Braive, R. Integrated III-V photonic crystal–Si waveguide platform with tailored optomechanical coupling. Sci. Rep.
**2015**, 5, 16526. [Google Scholar] [CrossRef] [PubMed] - Zhang, H.; Zeng, C.; Chen, D.; Li, M.; Wang, Y.; Huang, Q.; Xiao, X.; Xia, J. Femtogram scale nanomechanical resonators embedded in a double-slot photonic crystal nanobeam cavity. Appl. Phys. Lett.
**2016**, 108, 051106. [Google Scholar] [CrossRef] - Davis, J.P.; Vick, D.; Fortin, D.C.; Burgess, J.A.J.; Hiebert, W.K.; Freeman, M.R. Nanotorsional resonator torque magnetometry. Appl. Phys. Lett.
**2010**, 96, 072513. [Google Scholar] [CrossRef] - Forstner, S.; Prams, S.; Knittel, J.; van Ooijen, E.D.; Swaim, J.D.; Harris, G.I.; Szorkovszky, A.; Bowen, W.P.; Rubinsztein-Dunlop, H. Cavity optomechanical magnetometer. Phys. Rev. Lett.
**2012**, 108, 120801. [Google Scholar] [CrossRef] [PubMed] - Elste, F.; Girvin, S.M.; Clerk, A.A. Quantum noise interference and backaction cooling in cavity nanomechanics. Phys. Rev. Lett.
**2009**, 102, 207209. [Google Scholar] [CrossRef] [PubMed] - Weiss, T.; Nunnenkamp, A. Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems. Phys. Rev. A
**2013**, 88, 023850. [Google Scholar] [CrossRef] - Taillaert, D.; van Laere, F.; Ayre, M.; Bogaerts, W.; van Thourhout, D.; Bienstman, P.; Baets, R. Grating couplers for coupling between optical fibers and nanophotonic waveguides. Jpn. J. Appl. Phys.
**2006**, 45, 6071–6077. [Google Scholar] [CrossRef] - Karle, T.J.; Halioua, Y.; Raineri, F.; Monnier, P.; Braive, R.; Le Gratiet, L.; Beaudoin, G.; Sagnes, I.; Roelkens, G.; van Laere, F.; et al. Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides. J. Appl. Phys.
**2010**, 107, 063103. [Google Scholar] [CrossRef][Green Version] - Tsvirkun, V. Optomechanics in Hybrid Fully-Integrated Two-Dimensional Photonic Crystal Resonators. Ph.D. Thesis, Université Paris Sud—Paris XI, Orsay, France, 2015. [Google Scholar]
- Akahane, Y.; Asano, T.; Song, B.S.; Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature
**2003**, 425, 944–947. [Google Scholar] [CrossRef] [PubMed] - Gavartin, E.; Braive, R.; Sagnes, I.; Arcizet, O.; Beveratos, A.; Robert, I. Optomechanical coupling in a two dimensional photonic crystal cavity. Phys. Rev. Lett.
**2011**, 106, 203902. [Google Scholar] [CrossRef] [PubMed] - Hostein, R.; Braive, R.; Le Gratiet, L.; Talneau, A.; Beaudoin, G.; Robert-Philip, I.; Sagnes, I.; Beveratos, A. Demonstration of coherent emission from high-beta photonic crystal nanolasers at room temperature. Opt. Lett.
**2010**, 35, 1154–1156. [Google Scholar] [CrossRef] [PubMed] - Moreau, V.; Tessier, G.; Raineri, F.; Brunstein, M.; Yacomotti, A.; Raj, R.; Sagnes, I.; Levenson, A.; de Wilde, Y. Transient thermoreflectance imaging of active photonic crystals. Appl. Phys. Lett.
**2010**, 96, 091103. [Google Scholar] [CrossRef] - Usami, K.; Naesby, A.; Bagci, T.; Nielsen, B.M.; Liu, J.; Stobbe, S.; Lodahl, P.; Polzik, E.S. Optical cavity cooling of mechanical modes in a semiconductor nanomembrane. Nat. Phys.
**2012**, 8, 168–172. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) SEM image of the fabricated device; (

**b**) Schematic of the membrane cross-section composition (not to scale); (

**c**) TEM image of a single QD; (

**d**) $\mathsf{\mu}$PL spectra of the QD layer from unpatterned membrane (dark blue) and from the region embedding an ${\mathrm{L}}_{3}$ PhC cavity (violet).

**Figure 2.**(

**a**) Schematic of the experimental set-up for the characterization of optical/optomechanical transduction of non-resonant pump (${\lambda}_{\mathrm{pump}}=800$ nm) to resonant probe (${\lambda}_{\mathrm{probe}}\approx 1.56$ $\mathsf{\mu}$m); (

**b**) Emission properties of the QDs, filtered by the ${\mathrm{L}}_{3}$ cavity (loaded ${\lambda}_{\mathrm{c}}=1564.5$ nm): fitted intensity I, wavelength ${\lambda}_{0}$ and linewidth κ of the collected emission are plotted versus non-resonant pump power. Inset: zoom-in of ${\lambda}_{0}$ power dependence.

**Figure 3.**(

**a**) Spectra of the probe light, as measured by the Electric spectrum analyser (ESA), coupled to the PhC cavity with a layer of QDs in the middle, pumped non-resonantly at normal incidence. The pump laser power is modulated at ${\mathsf{\Omega}}_{\mathrm{mod}}/2\mathsf{\pi}$. Shown curves are measured at different laser–cavity detunings $\mathrm{\Delta}={\lambda}_{\mathrm{probe}}-{\lambda}_{0}$. The Lorentzian peak at ${\mathsf{\Omega}}_{\mathrm{m}}/2\mathsf{\pi}$ corresponds to the fundamental flexural mode of the membrane (membrane size: $8.5\times 4.8\times 0.26$ $\mathsf{\mu}$m). Inset: schematic describing the origin of the two detected peaks; (

**b**) (bottom) Mechanical ${\mathrm{M}}_{1}$ mode amplitude dependence on probe laser detuning, acquired for forward (blue- to red-detuned) and backward (red- to blue-detuned) scanning directions. (top) Waveguide transmission spectra for both probe sweep directions. Measurements in (

**b**) were performed at the same probe laser power (corresponding to the intracavity power ${P}_{\mathrm{c}}\approx 100$ $\mathsf{\mu}$W) and pump laser power ${P}_{\mathrm{pump}}=90$ $\mathsf{\mu}$W; at room temperature ${T}_{\mathrm{b}}=294$ K and at low pressure $p<{10}^{-4}$ mbar.

**Figure 4.**(

**a**–

**c**) Power spectral densities at mechanical resonance (circles: experimental data; solid lines: fit to model [6]) ${S}_{\mathrm{P}}({\mathsf{\Omega}}_{\mathrm{m}},\mathrm{\Delta}/\kappa )$ and fitted relative contributions of coupling dispersive (${g}_{\omega}$) and dissipative (intrinsic ${g}_{\kappa ,\mathrm{i}}$ and external ${g}_{\kappa ,\mathrm{e}}$) coupling strengths for different powers of non-resonant pump; (

**d**) Experimental evolution of the optomechanical coupling coefficients with the power of the external non-resonant pump (markers—data from (

**a**–

**c**), solid lines—linear fits).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tsvirkun, V.; Surrente, A.; Raineri, F.; Beaudoin, G.; Raj, R.; Sagnes, I.; Robert-Philip, I.; Braive, R. External Control of Dissipative Coupling in a Heterogeneously Integrated Photonic Crystal—SOI Waveguide Optomechanical System. *Photonics* **2016**, *3*, 52.
https://doi.org/10.3390/photonics3040052

**AMA Style**

Tsvirkun V, Surrente A, Raineri F, Beaudoin G, Raj R, Sagnes I, Robert-Philip I, Braive R. External Control of Dissipative Coupling in a Heterogeneously Integrated Photonic Crystal—SOI Waveguide Optomechanical System. *Photonics*. 2016; 3(4):52.
https://doi.org/10.3390/photonics3040052

**Chicago/Turabian Style**

Tsvirkun, Viktor, Alessandro Surrente, Fabrice Raineri, Grégoire Beaudoin, Rama Raj, Isabelle Sagnes, Isabelle Robert-Philip, and Rémy Braive. 2016. "External Control of Dissipative Coupling in a Heterogeneously Integrated Photonic Crystal—SOI Waveguide Optomechanical System" *Photonics* 3, no. 4: 52.
https://doi.org/10.3390/photonics3040052