Graphene Plasmonic Waveguides for Mid-Infrared Supercontinuum Generation on a Chip
Abstract
:1. Introduction
2. Derivation of Pulse Propagation Equation
2.1. Perturbation Expansion of Nonlinear Maxwell Equations
2.2. Pulse Propagation Equation
3. Spectral Broadening in a GSP Waveguide
4. Summary
Acknowledgments
Conflicts of Interest
References
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007. [Google Scholar]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, T.W.; Genet, C.; Bozhevolnyi, S.I. Surface-plasmon circuitry. Phys. Today 2008, 61, 44–50. [Google Scholar] [CrossRef]
- Sederberg, S.; Elezzabi, A.Y. Coherent visible-light-generation enhancement in silicon-based nanoplasmonic waveguides via third-harmonic conversion. Phys. Rev. Lett. 2015, 114. [Google Scholar] [CrossRef]
- Milian, C.; Skryabin, D.V. Nonlinear switching in arrays of semiconductor on metal photonic wires. Appl. Phys. Lett. 2011, 98. [Google Scholar] [CrossRef]
- Grigorenko, A.N.; Polini, M.; Novoselov, K.S. Graphene plasmonics. Nat. Photon. 2012, 6, 749–758. [Google Scholar] [CrossRef]
- Low, T.; Avouris, P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 2014, 8, 1086–1101. [Google Scholar] [CrossRef] [PubMed]
- Jablan, M.; Buljan, H.; Soljacic, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 2009, 80. [Google Scholar] [CrossRef]
- Yan, H.; Low, T.; Zhu, W.; Wu, Y.; Freitag, M.; Li, X.; Guinea, F.; Avouris, P.; Xia, F. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 2013, 7, 394–399. [Google Scholar] [CrossRef]
- Nikitin, A.Y.; Guinea, F.; García-Vidal, F.J.; Martín-Moreno, L. Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 2011, 84. [Google Scholar] [CrossRef]
- Zhu, X.; Yan, W.; Mortensen, N.A.; Xiao, S. Bends and splitters in graphene nanoribbon waveguides. Optics 2013, 21, 3486–3491. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.; Manjavacas, A.; Thongrattanasiri, S.; Koppens, F.H.L.; de Abajo, F.J.G. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 2012, 6, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Forati, E.; Hanson, G.W. Surface plasmon polaritons on soft-boundary graphene nanoribbons and their application in switching/demultiplexing. Appl. Phys. Lett. 2013, 103. [Google Scholar] [CrossRef]
- He, S.; Zhang, X.; He, Y. Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. Opt. Express 2013, 21, 30664–30673. [Google Scholar] [CrossRef] [PubMed]
- Ooi, K.J.A.; Chu, H.S.; Ang, L.K.; Bai, P. Mid-Infrared active graphene nanoribbon plasmonic waveguide devices. J. Opt. Soc. Am. B 2013, 30, 3111–3116. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, Z.; Cheng, J.; Liu, J. Graphene surface plasmon waveguides incorporating high-index dielectric ridges for single mode transmission. Opt. Commun. 2014, 328, 124–128. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, L.; He, S.; Dai, D. Tunable pattern-free graphene nanoplasmonic waveguides on trenched silicon substrate. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Lao, J.; Tao, J.; Wang, Q.J.; Huang, X.G. Tunable graphene-based plasmonic waveguides: nano modulators and nano attenuators. Laser Photon. Rev. 2014, 8, 569–574. [Google Scholar] [CrossRef]
- Mikhailov, S.A. Non-linear electromagnetic response of graphene. Eur. Phys. Lett. 2007, 79. [Google Scholar] [CrossRef]
- Mikhailov, S.A.; Ziegler, K. Nonlinear electromagnetic response of graphene: Frequency multiplication and the self-consistent-field effects. J. Phys. Condensed Matter 2008, 20. [Google Scholar] [CrossRef] [PubMed]
- Glazov, M.; Ganichev, S. High frequency electric field induced nonlinear effects in graphene. Phys. Rep. 2014, 535, 101–138. [Google Scholar] [CrossRef]
- Hendry, E.; Hale, P.J.; Moger, J.; Savchenko, A.K.; Mikhailov, S.A. Coherent Nonlinear Optical Response of Graphene. Phys. Rev. Lett. 2010, 105. [Google Scholar] [CrossRef]
- Chu, S.; Wang, S.; Gong, Q. Ultrafast third-order nonlinear optical properties of graphene in aqueous solution and polyvinyl alcohol film. Chem. Phys. Lett. 2012, 523, 104–106. [Google Scholar] [CrossRef]
- Zhang, H.; Virally, S.; Bao, Q.; Kian Ping, L.; Massar, S.; Godbout, N.; Kockaert, P. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 2012, 37, 1856–1858. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Petrone, N.; McMillan, J.F.; van der Zande, A.; Yu, M.; Lo, G.Q.; Kwong, D.L.; Hone, J.; Wong, C.W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photon. 2012, 6, 554–559. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dadap, J.I.; Petrone, N.; Yeh, P.C.; Hone, J.; Osgood, R.M. Optical third-harmonic generation in graphene. Phys. Rev. X 2013, 3. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, J.; Gerstenkorn, C.; Wang, R.; Chiu, H.Y.; Smirl, A.L.; Zhao, H. Third harmonic generation in graphene and few-layer graphite films. Phys. Rev. B 2013, 87. [Google Scholar] [CrossRef]
- Rao, S.M.; Lyons, A.; Roger, T.; Clerici, M.; Zheludev, N.I.; Faccio, D. Two-dimensional materials and the coherent control of nonlinear optical interactions. 2015; arXiv:1503.07665. [Google Scholar]
- Gorbach, A.V. Nonlinear graphene plasmonics: Amplitude equation for surface plasmons. Phys. Rev. A 2013, 87. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, D.A.; Gorbach, A.V.; Iorsh, I.V.; Shadrivov, I.V.; Kivshar, Y.S. Nonlinear switching with a graphene coupler. Phys. Rev. B 2013, 88. [Google Scholar] [CrossRef] [Green Version]
- Gorbach, A.V.; Marini, A.; Skryabin, D.V. Graphene-clad tapered fiber: effective nonlinearity and propagation losses. Opt. Lett. 2013, 38, 5244–5247. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, S.A. Quantum theory of the third-order nonlinear electrodynamic effects of graphene. 2015; arXiv:1506.00534. [Google Scholar]
- Sukhorukov, A.A.; Solntsev, A.S.; Kruk, S.S.; Neshev, D.N.; Kivshar, Y.S. Nonlinear coupled-mode theory for periodic plasmonic waveguides and metamaterials with loss and gain. Opt. Lett. 2014, 39, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Gorbach, A.V.; Skryabin, D.V. Dispersion of nonlinearity in subwavelength waveguides: derivation of pulse propagation equation and frequency conversion effects. J. Opt. Soc. Am. B 2013, 30, 812–820. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics, 5th ed.; Academic Press: Boston, MA, USA, 2013. [Google Scholar]
- Falkovsky, L.A. Optical properties of graphene. J. Phys. Conf. Ser. 2008, 129. [Google Scholar] [CrossRef]
- Roberts, A.; Cormode, D.; Reynolds, C.; Newhouse-Illige, T.; LeRoy, B.J.; Sandhu, A.S. Response of graphene to femtosecond high-intensity laser irradiation. Appl. Phys. Lett. 2011, 99. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorbach, A.V. Graphene Plasmonic Waveguides for Mid-Infrared Supercontinuum Generation on a Chip. Photonics 2015, 2, 825-837. https://doi.org/10.3390/photonics2030825
Gorbach AV. Graphene Plasmonic Waveguides for Mid-Infrared Supercontinuum Generation on a Chip. Photonics. 2015; 2(3):825-837. https://doi.org/10.3390/photonics2030825
Chicago/Turabian StyleGorbach, Andrey V. 2015. "Graphene Plasmonic Waveguides for Mid-Infrared Supercontinuum Generation on a Chip" Photonics 2, no. 3: 825-837. https://doi.org/10.3390/photonics2030825
APA StyleGorbach, A. V. (2015). Graphene Plasmonic Waveguides for Mid-Infrared Supercontinuum Generation on a Chip. Photonics, 2(3), 825-837. https://doi.org/10.3390/photonics2030825