Eccentrically-Layered Active Coated Nano-Particles for Directive Near- and Far-Field Radiation
Abstract
:1. Introduction
2. Configuration and Analytical Solution
2.1. Configuration
2.2. Analytical Solution
3. Geometry, Materials and Gain Model
Nano-Core | Middle Layer | Nano-Shell | Host Medium | (nm) | (nm, ) | (V) |
---|---|---|---|---|---|---|
SiO2 | Free-space | Ag | Free-space | (18, 24, 30) | (35, 0) | 1 |
4. Results and Discussion
4.1. NRR and Near-Field Distributions
4.1.1. Introducing Eccentricity in Concentric Dipolar Configurations
(nm) | (nm) | NRR (dB) | [nm] | NRR (dB) |
---|---|---|---|---|
5 | 420.9 | 13.1 | 538.5 | 19.8 |
3 | 418.8 | 2.9 | 538.7 | 29.1 |
1 | 418.1 | 1.7 | 538.7 | 46.4 |
0 | 418.3 | 1.3 | 538.7 | 55.8 |
−1 | 418.7 | 1.4 | 538.7 | 46.3 |
−3 | 419.5 | 4.5 | 538.7 | 28.8 |
−5 | 421.0 | 16.4 | 538.5 | 19.4 |
4.1.2. Optimization of Eccentric Configurations
4.1.3. Introducing Eccentricity in Concentric Quadrupolar Configurations
4.2. Directivity
5. Summary and Conclusions
Author Contributions
Conflicts of Interest
A. Determination of the Unknown Expansion Coefficients
References
- Choi, I.; Choi, Y. Plasmonic nanosensors: Review and prospect. IEEE J. Sel. Top. Quant. Electron. 2012, 18, 1110–1121. [Google Scholar] [CrossRef]
- Hill, M.T. Status and prospects for metallic and plasmonic nano-lasers. J. Opt. Soc. Am. B 2010, 27, B36–B44. [Google Scholar] [CrossRef]
- Engheta, N. Circuits with light at nanoscale: Optical nanocircuits inspired by metamaterials. Science 2007, 317, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- Catchpole, K.R.; Polman, A. Plasmonic solar cells. Opt. Express 2008, 16, 21793–21800. [Google Scholar] [CrossRef] [PubMed]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2013, 9, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- Sikdar, D.; Rukhlenko, I.D.; Cheng, W.; Premaratne, M. Optimized gold nanoshell ensambles for biomedical applications. Nanoscale Res. Lett. 2013, 8, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Novotny, L.; Hecht, B. Principles of Nano-Optics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Novotny, L.; van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Agio, M.; Alú, A. Optical Antennas; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Alu, A.; Engheta, E. Theory, modeling and features of optical nanoantennas. IEEE Trans. Antennas Propagat. 2013, 61, 1508–1517. [Google Scholar] [CrossRef]
- Oldenburg, S.; Hale, G.; Jackson, J.; Halas, N. Light scattering from dipole and quadrupole nanoshell antennas. Appl. Phys. Lett. 1999, 75, 1063–1065. [Google Scholar] [CrossRef]
- Mirin, N.A.; Halas, N. Light-bending nanoparticles. Nano Lett. 2009, 9, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Halas, N.J. Plasmonics—An emerging field fostered by Nano Letters. Nano Lett. 2010, 10, 3816–3822. [Google Scholar] [CrossRef] [PubMed]
- Engheta, N.; Ziolkowski, R.W. Metamaterials: Physics and Engineering Explorations; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Alú, A.; Engheta, E. Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers. J. Appl. Phys. 2005, 97, 094310. [Google Scholar] [CrossRef]
- Arslanagić, S.; Ziolkowski, R.W.; Breinbjerg, O. Analytical and numerical investigation of the radiation and scattering from concentric metamaterial cylinders excited by an electric line source. Radio Sci. 2007, 42, RS6S15. [Google Scholar] [CrossRef]
- Arslanagić, S.; Ziolkowski, R.W.; Breinbjerg, O. Analytical and numerical investigation of the radiation from concentric metamaterial spheres excited by an electric Hertzian dipole. Radio Sci. 2007, 42, RS6S16. [Google Scholar] [CrossRef]
- Bergman, D.J.; Stockman, M.I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 2003, 90, 027402. [Google Scholar] [CrossRef]
- Gordon, J.A.; Ziolkowski, R.W. The design and simulated performance of a coated nano-particle laser. Opt. Express 2007, 15, 2622–2653. [Google Scholar] [CrossRef] [PubMed]
- Noginov, M.A.; Zhu, G.; Belgrave, A.M.; Bakker, R.; Shalaev, V.M.; Narimanov, E.E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U. Demonstration of a spaser-based nanolaser. Nature 2009, 460, 1110–1113. [Google Scholar] [CrossRef] [PubMed]
- Arslanagić, S.; Ziolkowski, R.W. Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole—Resonance and transparency effects. J. Opt. A 2010, 12, 024014. [Google Scholar] [CrossRef]
- Arslanagić, S.; Liu, Y.; Malureanu, R.; Ziolkowski, R.W. Impact of the excitation source and plasmonic material on cylindrical active coated nano-particles. Sensors 2011, 11, 9109–9120. [Google Scholar] [CrossRef] [PubMed]
- Boriskina, S.V.; Zheludev, N. Singular and Chiral Nanoplasmonics; Pan Stanford Publishing Pte. Ltd.: Singapore, 2014. [Google Scholar]
- Krasnok, A.E.; Miroshnichenko, A.E.; Belov, P.A.; Kivshar, Y.S. All-dielectric nanoantennas. Proc. SPIE 2013, 8806. [Google Scholar] [CrossRef]
- Fu, Y.H.; Kuznetsov, A.I.; Miroshnichenko, A.E.; Yu, Y.F.; Luk'yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 2013, 4, 1527. [Google Scholar] [CrossRef] [PubMed]
- Krasnok, A.E.; Simovski, C.R.; Belov, P.A.; Kivshar, Y.S. Superdirective dielectric nanoantennas. Nanoscale 2014, 6, 7354–7361. [Google Scholar] [CrossRef] [PubMed]
- Sikdar, D.; Cheng, W.; Premaratne, M. Optically resonant magneto-electric cubic nanoantennas for ultradirectional light scattering. J. Appl. Phys. 2015, 117, 083101. [Google Scholar] [CrossRef]
- Campbell, S.; Ziolkowski, R.W. Simultaneous excitation of electric and magnetic dipole modes in a resonant core-shell particle at infrared frequencies to achieve minimal backscattering. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 4700209. [Google Scholar] [CrossRef]
- Liu, W.; Miroshnichenko, A.E.A.E.; Neshev, D.N.; Kivshar, Y.S. Broadband unidirectional scattering by magneto-electric core-shell nanoparticles. ACS Nano 2012, 6, 5489–5497. [Google Scholar] [CrossRef] [PubMed]
- Alú, A.; Engheta, N. Enhanced directivity response from subwavelength infrared/optical nano-antennas loaded with plasmonic materials or metamaterials. IEEE Trans. Antennas Propagat. 2007, 55, 3027–3039. [Google Scholar] [CrossRef]
- Ruan, Z.; Fan, S. Superscattering of light from subwavelength nanostructures. Phys. Rev. Lett. 2010, 105, 013901. [Google Scholar] [CrossRef]
- Ruan, Z.; Fan, S. Design of subwavelength superscattering nanospheres. Appl. Phys. Lett. 2011, 98, 04101. [Google Scholar] [CrossRef]
- Liberal, I.; Ederra, I.; Gonzalo, R.; Ziolkowski, R.W. Induction theorem analysis of resonant nanoparticles: Design of a Huygens source nanoparticle laser. Phys. Rev. Appl. 2014, 1, 044002. [Google Scholar] [CrossRef]
- Campbell, S.D.; Ziolkowski, R.W. Near-field directive beams from passive and active asymmetric optical nanoantennas. IEEE J. Sel. Top. Quantum Electron. 2014, 21, 4800112. [Google Scholar] [CrossRef]
- Arslanagić, S.; Ziolkowski, R.W. Directive properties of active coated nano-particles. Adv. Electromag. 2012, 1, 57–64. [Google Scholar] [CrossRef]
- Balanis, C.A. Advanced Engineering Electromagnetics, 2nd. ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kishk, A.A.; Parrikar, R.P.; Elsherbeni, A.Z. Electromagnetic scattering from an eccentric multilayered circular cylinder. IEEE Trans. Antennas Propagat. 1992, 40, 295–303. [Google Scholar] [CrossRef]
- Stratton, J.A. Electromagnetic Theory; McGraw-Hill: New York, NY, USA; London, UK, 1941. [Google Scholar]
- Ziolkowski, R.W.; Kipple, A. Application of double negative metamaterials to increase the power radiated by electrically small antennas. IEEE Trans. Antennas Propag. 2003, 51, 2626–2640. [Google Scholar] [CrossRef]
- Purcell, E.M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 1946, 69, 681. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thorsen, R.Ø.; Arslanagić, S. Eccentrically-Layered Active Coated Nano-Particles for Directive Near- and Far-Field Radiation. Photonics 2015, 2, 773-794. https://doi.org/10.3390/photonics2030773
Thorsen RØ, Arslanagić S. Eccentrically-Layered Active Coated Nano-Particles for Directive Near- and Far-Field Radiation. Photonics. 2015; 2(3):773-794. https://doi.org/10.3390/photonics2030773
Chicago/Turabian StyleThorsen, Rasmus Ø., and Samel Arslanagić. 2015. "Eccentrically-Layered Active Coated Nano-Particles for Directive Near- and Far-Field Radiation" Photonics 2, no. 3: 773-794. https://doi.org/10.3390/photonics2030773
APA StyleThorsen, R. Ø., & Arslanagić, S. (2015). Eccentrically-Layered Active Coated Nano-Particles for Directive Near- and Far-Field Radiation. Photonics, 2(3), 773-794. https://doi.org/10.3390/photonics2030773