Rigorous Coupled-Wave Analysis Algorithm for Stratified Two-Dimensional Gratings with Unconditionally Stable H-Matrix Methods
Abstract
1. Introduction
2. Formulation
2.1. Fourier Expansion of the Permittivity Within the Grating Region
2.2. Electromagnetic Fields at Region I and Region II
2.3. Electromagnetic Fields at the Grating Region
2.4. Matching the Boundary Conditions in Single-Layer 2D Gratings
2.5. Matching the Boundary Conditions in Stratified 2D Gratings
3. Numerical Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Pestourie, R.; Pérez-Arancibia, C.; Lin, Z.; Shin, W.; Capasso, F.; Johnson, S.G. Inverse design of large-area metasurfaces. Opt. Express 2018, 26, 33732–33747. [Google Scholar] [CrossRef]
- Aieta, F.; Kats, M.A.; Genevet, P.; Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015, 347, 1342–1345. [Google Scholar] [CrossRef]
- Lee, G.-Y.; Yoon, G.; Lee, S.-Y.; Yun, H.; Cho, J.; Lee, K.; Kim, H.; Rho, J.; Lee, B. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 2018, 10, 4237–4245. [Google Scholar] [CrossRef]
- Zhao, Y.; Alù, A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B 2011, 84, 205428. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Coillet, A.; Demichel, O.; Wang, Z.; Rego, D.; Bouhelier, A.; Grelu, P.; Cluzel, B. Saturable plasmonic metasurfaces for laser mode locking. Light Sci. Appl. 2020, 9, 50. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Yu, H.; Deng, N.; Qiu, F.; Wang, J.; Qiu, M. Plasmonic metafibers electro-optic modulators. Light Sci. Appl. 2023, 12, 198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, L.; Zhang, H.; Fu, B.; Wang, J.; Qiu, M. Pulsed polarized vortex beam enabled by metafiber lasers. PhotoniX 2024, 5, 36. [Google Scholar] [CrossRef]
- Dainese, P.; Marra, L.; Cassara, D.; Portes, A.; Oh, J.; Yang, J.; Palmieri, A.; Rodrigues, J.R.; Dorrah, A.H.; Capasso, F. Shape optimization for high efficiency metasurfaces: Theory and implementation. Light Sci. Appl. 2024, 13, 300. [Google Scholar] [CrossRef] [PubMed]
- Yee, K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar] [CrossRef]
- García de Abajo, F.J.; Howie, A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 2002, 65, 115418. [Google Scholar] [CrossRef]
- Hohenester, U.; Trügler, A. MNPBEM—A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 2012, 183, 370–381. [Google Scholar] [CrossRef]
- Jin, J.-M. The Finite Element Method in Electromagnetics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Moharam, M.G.; Grann, E.B.; Pommet, D.A.; Gaylord, T.K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 1995, 12, 1068–1076. [Google Scholar] [CrossRef]
- Lalanne, P.; Morris, G.M. Highly improved convergence of the coupled-wave method for TM polarization. J. Opt. Soc. Am. A 1996, 13, 779–784. [Google Scholar] [CrossRef]
- Lalanne, P. Improved formulation of the coupled-wave method for two-dimensional gratings. J. Opt. Soc. Am. A 1997, 14, 1592–1598. [Google Scholar] [CrossRef]
- Li, L. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 1996, 13, 1870–1876. [Google Scholar] [CrossRef]
- Li, L. New formulation of the Fourier modal method for crossed surface-relief gratings. J. Opt. Soc. Am. A 1997, 14, 2758–2767. [Google Scholar] [CrossRef]
- Zhao, J.; Tian, X.; Wang, J. Conical diffractions of multilayered gratings modeled by Cartesian rigorous coupled-wave analysis. J. Opt. Soc. Am. A 2023, 40, 1940–1946. [Google Scholar] [CrossRef]
- Liu, V.; Fan, S. S4: A free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 2012, 183, 2233–2244. [Google Scholar] [CrossRef]
- Sapra, N.V.; Vercruysse, D.; Su, L.; Yang, K.Y.; Skarda, J.; Piggott, A.Y.; Vučković, J. Inverse design and demonstration of broadband grating couplers. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 6100207. [Google Scholar] [CrossRef]
- Tamir, T.; Wang, H.C.; Oliner, A.A. Wave propagation in sinusoidally stratified dielectric media. IEEE Trans. Microw. Theory Tech. 1964, 12, 323–335. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 1981, 71, 811–818. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Three-dimensional vector coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 1983, 73, 1105–1112. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Rigorous coupled-wave analysis of metallic surface-relief gratings. J. Opt. Soc. Am. A 1986, 3, 1780–1787. [Google Scholar] [CrossRef]
- Li, L. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors. J. Opt. A Pure Appl. Opt. 2003, 5, 345. [Google Scholar] [CrossRef]
- Liu, H.; Lalanne, P. Microscopic theory of the extraordinary optical transmission. Nature 2008, 452, 728–731. [Google Scholar] [CrossRef]
- Logofatu, P.C. Rigorous coupled-wave analysis for two-dimensional gratings. Proc. SPIE 2005, 5972, 59720Q. [Google Scholar] [CrossRef]
- Li, J.; Shi, L.; Ma, Y.; Ran, Y.; Liu, Y.; Wang, J. Efficient and stable implementation of RCWA for ultrathin multilayer gratings: T-matrix approach without solving eigenvalues. IEEE Antennas Wirel. Propag. Lett. 2020, 20, 83–87. [Google Scholar] [CrossRef]
- Xu, J.; Charlton, M.D.B. Highly efficient Rigorous Coupled-Wave Analysis implementation without eigensystem calculation. IEEE Access 2024, 12, 127966–127975. [Google Scholar] [CrossRef]
- Moharam, M.G.; Pommet, D.A.; Grann, E.B.; Gaylord, T.K. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach. J. Opt. Soc. Am. A 1995, 12, 1077–1086. [Google Scholar] [CrossRef]
- Li, L. Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity. J. Opt. Soc. Am. A 1993, 10, 2581–2591. [Google Scholar] [CrossRef]
- Li, L. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A 1996, 13, 1024–1035. [Google Scholar] [CrossRef]
- Tan, E.L. Enhanced R-matrix algorithms for multilayered diffraction gratings. Appl. Opt. 2006, 45, 4803–4809. [Google Scholar] [CrossRef]
- Rumpf, R.C. Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention. Prog. Electromagn. Res. B 2011, 35, 241–261. [Google Scholar] [CrossRef]
- Tan, E.L. Hybrid-matrix algorithm for rigorous coupled-wave analysis of multilayered diffraction gratings. J. Mod. Opt. 2006, 53, 417–428. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Sanjeev, V.; Khorasaninejad, M.; Shi, Z.; Lee, E.; Capasso, F. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 2018, 13, 220–226. [Google Scholar] [CrossRef] [PubMed]
Parameter | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | 0.25 | 0.75 | 0.25 | 0.75 | 1 | 2.25 | 2.25 | 1 | 12 | 12 |
Category | Specification |
---|---|
Processor | HexaCore AMD Ryzen 5 4600H, 3921 MHz (3.0 GHz base, 4.0 GHz turbo) 6 cores, 12 threads |
Cache | 384 KB L1 cache, 3 MB L2 cache, 8 MB L3 cache |
Memory | 16GB (2 × 8 GB) Ramaxel RMSA3320MJ78HAF-3200 DDR4 |
Memory Transfer Speed | Read: [45.68 GB/s], Write: [45.80 GB/s] |
Operating System | Windows 10 64-bit |
Software | MATLAB R2022a, default numerical libraries |
Parameter | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Value | 0.416 | 0.833 | 0.416 | 0.833 | 1 | 2.25 | 2.25 | 1 |
Parameter | Value | Parameter | Value |
---|---|---|---|
d2 | 0.5 μm | 1 | |
d3 | 0.5 μm | 2.16 | |
0.6 μm | 1 | ||
0.6 μm | 12.06 | ||
1 | 2.16 | ||
10 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Wang, J.; Wang, G. Rigorous Coupled-Wave Analysis Algorithm for Stratified Two-Dimensional Gratings with Unconditionally Stable H-Matrix Methods. Photonics 2025, 12, 943. https://doi.org/10.3390/photonics12090943
Song K, Wang J, Wang G. Rigorous Coupled-Wave Analysis Algorithm for Stratified Two-Dimensional Gratings with Unconditionally Stable H-Matrix Methods. Photonics. 2025; 12(9):943. https://doi.org/10.3390/photonics12090943
Chicago/Turabian StyleSong, Kaixuan, Jiyong Wang, and Gaofeng Wang. 2025. "Rigorous Coupled-Wave Analysis Algorithm for Stratified Two-Dimensional Gratings with Unconditionally Stable H-Matrix Methods" Photonics 12, no. 9: 943. https://doi.org/10.3390/photonics12090943
APA StyleSong, K., Wang, J., & Wang, G. (2025). Rigorous Coupled-Wave Analysis Algorithm for Stratified Two-Dimensional Gratings with Unconditionally Stable H-Matrix Methods. Photonics, 12(9), 943. https://doi.org/10.3390/photonics12090943