Low Phase Noise Millimeter-Wave Generation Based on Optoelectronic Feed-Forward
Abstract
1. Introduction
2. Principles and Methods
2.1. Principles
2.2. Analysis and Theoretical Calculation Results
3. Experiments and Results
3.1. Experimental Setup
3.2. Measurement of Extracted Phase Noise Results
3.3. Measurement of Suppressed Phase Noise Results
3.4. Greater Phase Noise Tolerance Range for LO Input
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PN | Phase Noise |
PM | Phase Modulator |
OC | Optical Coupler |
LNA | Low-Noise Amplifier |
AOM | Acousto-Optic Modulator |
IF | Intermediate Frequency |
EDFA | Erbium-Doped Fiber Amplifier |
LO | Local Oscillation |
MZI | Mach–Zehnder Interferometer |
PD | Photodetector |
References
- Ghelfi, P.; Laghezza, F.; Scotti, F.; Serafino, G.; Capria, A.; Pinna, S.; Onori, D.; Porzi, C.; Scaffardi, M.; Malacarne, A. A fully photonics-based coherent radar system. Nature 2014, 507, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Aubry, A.; Carotenuto, V.; Farina, A.; De Maio, A. Radar phase noise modeling and effects-part II: Pulse doppler processors and sidelobe blankers. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 712–725. [Google Scholar] [CrossRef]
- Axelsson, S.R.J. Noise radar using random phase and frequency modulation. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2370–2384. [Google Scholar] [CrossRef]
- Cundiff, S.T.; Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 2003, 75, 325. [Google Scholar] [CrossRef]
- Yao, X.S.; Maleki, L. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B 1996, 13, 1725–1735. [Google Scholar] [CrossRef]
- Maleki, L. The optoelectronic oscillator. Nat. Photonics 2011, 5, 728–730. [Google Scholar] [CrossRef]
- Gao, H.; Dai, J.; Guo, M.; Zhang, T.; Xu, K. Fiber noise suppression for the low phase noise OEO. In AOPC 2024: AI in Optics and Photonics; SPIE: Bellingham, WA, USA, 2024; pp. 248–251. [Google Scholar]
- Hao, T.; Liu, Y.; Tang, J.; Cen, Q.; Li, W.; Zhu, N.; Dai, Y.; Capmany, J.; Yao, J.; Li, M. Recent advances in optoelectronic oscillators. Adv. Photonics 2020, 2, 044001. [Google Scholar] [CrossRef]
- Ge, Z.; Hao, T.; Capmany, J.; Li, W.; Zhu, N.; Li, M. Broadband random optoelectronic oscillator. Nat. Commun. 2020, 11, 5724. [Google Scholar] [CrossRef]
- Kudelin, I.; Groman, W.; Ji, Q.-X.; Guo, J.; Kelleher, M.L.; Lee, D.; Nakamura, T.; McLemore, C.A.; Shirmohammadi, P.; Hanifi, S. Photonic chip-based low-noise microwave oscillator. Nature 2024, 627, 534–539. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, Y. Microwave photonic radars. J. Light. Technol. 2020, 38, 5450–5484. [Google Scholar] [CrossRef]
- Zheng, Z.; Yu, J.; Wang, J.; Ma, C.; Luo, H.; Su, X.; Gao, Y. A Practicable Optoelectronic Oscillator with Ultra-Low Phase Noise. Photonics 2024, 11, 614. [Google Scholar] [CrossRef]
- Rubiola, E.; Salik, E.; Huang, S.; Yu, N.; Maleki, L. Photonic-delay technique for phase-noise measurement of microwave oscillators. J. Opt. Soc. Am. B 2005, 22, 987–997. [Google Scholar] [CrossRef]
- Capmany, J.; Mora, J.; Gasulla, I.; Sancho, J.; Lloret, J.; Sales, S. Microwave photonic signal processing. J. Light. Technol. 2012, 31, 571–586. [Google Scholar] [CrossRef]
- Eliyahu, D.; Seidel, D.; Maleki, L. Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system. In Proceedings of the 2008 IEEE International Frequency Control Symposium, Honolulu, HI, USA, 18–21 May 2008; pp. 811–814. [Google Scholar]
- Kittlaus, E.A.; Eliyahu, D.; Ganji, S.; Williams, S.; Matsko, A.B.; Cooper, K.B.; Forouhar, S. A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar. Nat. Commun. 2021, 12, 4397. [Google Scholar] [CrossRef]
- Kleine-Ostmann, T.; Nagatsuma, T. A review on terahertz communications research. J. Infrared Millim. Terahertz Waves 2011, 32, 143–171. [Google Scholar] [CrossRef]
- Yao, J. Microwave photonics. J. Light. Technol. 2009, 27, 314–335. [Google Scholar] [CrossRef]
- Seeds, A.J.; Williams, K.J. Microwave photonics. J. Light. Technol. 2006, 24, 4628–4641. [Google Scholar] [CrossRef]
- Fortier, T.M.; Kirchner, M.S.; Quinlan, F.; Taylor, J.; Bergquist, J.C.; Rosenband, T.; Lemke, N.; Ludlow, A.; Jiang, Y.; Oates, C.W. Generation of ultrastable microwaves via optical frequency division. Nat. Photonics 2011, 5, 425–429. [Google Scholar] [CrossRef]
- Sun, S.; Wang, B.; Liu, K.; Harrington, M.W.; Tabatabaei, F.; Liu, R.; Wang, J.; Hanifi, S.; Morgan, J.S.; Jahanbozorgi, M.; et al. Integrated optical frequency division for microwave and mmWave generation. Nature 2024, 627, 540–545. [Google Scholar] [CrossRef]
- Xie, X.; Bouchand, R.; Nicolodi, D.; Giunta, M.; Hänsel, W.; Lezius, M.; Joshi, A.; Datta, S.; Alexandre, C.; Lours, M. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photonics 2017, 11, 44–47. [Google Scholar] [CrossRef]
- Li, J.; Lee, H.; Vahala, K.J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 2013, 4, 2097. [Google Scholar] [CrossRef] [PubMed]
- Loh, W.; Gray, D.; Irion, R.; May, O.; Belanger, C.; Plant, J.; Juodawlkis, P.W.; Yegnanarayanan, S. Ultralow noise microwave synthesis via difference frequency division of a Brillouin resonator. Optica 2024, 11, 492–497. [Google Scholar] [CrossRef]
- Kippenberg, T.J.; Holzwarth, R.; Diddams, S.A. Microresonator-based optical frequency combs. Science 2011, 332, 555–559. [Google Scholar] [CrossRef]
- Jin, X.; Xie, Z.; Zhang, X.; Hou, H.; Wu, B.; Zhang, F.; Zhang, X.; Chang, L.; Gong, Q.; Yang, Q.-F. Microresonator-referenced soliton microcombs with zeptosecond-level timing noise. Nat. Photonics 2025, 19, 630–636. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, R.; Yin, F.; Dai, J.; Zhou, Y.; Li, J.; Xu, K. Hybrid radio-intermediate-frequency oscillator with photonic-delay-matched frequency conversion pair. Opt. Lett. 2015, 40, 2894–2897. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Lu, Y.; Cen, Q.; Wang, X.; Feng, Z.; Liu, C.; Yin, F.; Xu, K.; Li, M.; Dai, Y. Low Phase Noise Millimeter-Wave Generation Based on Optoelectronic Feed-Forward. Photonics 2025, 12, 757. https://doi.org/10.3390/photonics12080757
Yang T, Lu Y, Cen Q, Wang X, Feng Z, Liu C, Yin F, Xu K, Li M, Dai Y. Low Phase Noise Millimeter-Wave Generation Based on Optoelectronic Feed-Forward. Photonics. 2025; 12(8):757. https://doi.org/10.3390/photonics12080757
Chicago/Turabian StyleYang, Tong, Yiwen Lu, Qizhuang Cen, Xinpeng Wang, Zhen Feng, Chong Liu, Feifei Yin, Kun Xu, Ming Li, and Yitang Dai. 2025. "Low Phase Noise Millimeter-Wave Generation Based on Optoelectronic Feed-Forward" Photonics 12, no. 8: 757. https://doi.org/10.3390/photonics12080757
APA StyleYang, T., Lu, Y., Cen, Q., Wang, X., Feng, Z., Liu, C., Yin, F., Xu, K., Li, M., & Dai, Y. (2025). Low Phase Noise Millimeter-Wave Generation Based on Optoelectronic Feed-Forward. Photonics, 12(8), 757. https://doi.org/10.3390/photonics12080757