Parameter Study of 500 nm Thick Slot-Type Photonic Crystal Cavities for Cavity Optomechanical Sensing
Abstract
:1. Introduction
2. Experimental System and Device Fabrication
3. Experimental Results
3.1. Optical Q-Factor Enhancement
3.2. Optomechanical Oscillation and Other Nonlinear Effects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391–1452. [Google Scholar] [CrossRef]
- Li, Z.; Xiong, J.; Wang, Y.; Zhang, Y.; Wang, C.; Chen, K.; Huang, Y. Review on the Application of New Sensitive Materials for Magnetic Field Sensors. Intell. Percept. Eng. 2025, 2, 68–87. [Google Scholar]
- Huang, W.; Yan, X.; Zhang, S.; Li, Z.; Hassan, J.N.A.; Chen, D.; Wen, G.; Chen, K.; Deng, G.; Huang, Y. MEMS and MOEMS Gyroscopes: A Review. Photon. Sens. 2023, 13, 230419. [Google Scholar] [CrossRef]
- Barzanjeh, S.; Xuereb, A.; Gröblacher, S.; Paternostro, M.; Regal, C.A.; Weig, E.M. Optomechanics for quantum technologies. Nat. Phys. 2022, 18, 15–24. [Google Scholar] [CrossRef]
- Li, B.-B.; Bílek, J.; Hoff, U.B.; Madsen, L.S.; Forstner, S.; Prakash, V.; Schäfermeier, C.; Gehring, T.; Bowen, W.P.; Andersen, U.L. Quantum enhanced optomechanical magnetometry. Optica 2018, 5, 850–856. [Google Scholar] [CrossRef]
- Li, W.; Liu, W.; Liu, C.; Gu, Y.; Liu, L.; Zhou, Y.; Xing, E.; Shi, Y.; Tang, J.; Liu, J. Broadband Optomechanical Accelerometer Reaching the Thermomechanical Limit Based on Suspended Si3N4 Membrane Resonator. IEEE Sens. J. 2024, 24, 17528–17536. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef]
- Koshelev, K.; Kruk, S.; Melik-Gaykazyan, E.; Choi, J.-H.; Bogdanov, A.; Park, H.-G.; Kivshar, Y. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 2020, 367, 288–292. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, B.; Kim, S.; Monifi, F.; Jiang, X.; Li, Y.; Yu, P.; Liu, L.; Liu, Y.-X.; Alù, A.; et al. Optomechanical dissipative solitons. Nature 2021, 600, 75–80. [Google Scholar] [CrossRef]
- Wu, J.; Huang, S.-W.; Huang, Y.; Zhou, H.; Yang, J.; Liu, J.-M.; Yu, M.; Lo, G.; Kwong, D.-L.; Duan, S.; et al. Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators. Nat. Commun. 2017, 8, 15570. [Google Scholar] [CrossRef]
- Zhu, G.-L.; Hu, C.-S.; Wu, Y.; Lü, X.-Y. Cavity optomechanical chaos. Fundam. Res. 2023, 3, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Yang, Y.; Liu, W.; Xing, E.; Zhou, Y.; Tang, J.; Liu, J. Ultra-Stable Phonon Laser Through Closed-Loop Feedback Control for Optomechanical Sensing. Laser Photon. Rev. 2024, 18, 2400593. [Google Scholar] [CrossRef]
- de Lépinay, L.M.; Pigeau, B.; Besga, B.; Vincent, P.; Poncharal, P.; Arcizet, O. A universal and ultrasensitive vectorial nanomechanical sensor for imaging 2D force fields. Nat. Nanotechnol. 2017, 12, 156–162. [Google Scholar] [CrossRef]
- Fogliano, F.; Besga, B.; Reigue, A.; de Lépinay, L.M.; Heringlake, P.; Gouriou, C.; Eyraud, E.; Wernsdorfer, W.; Pigeau, B.; Arcizet, O. Ultrasensitive nano-optomechanical force sensor operated at dilution temperatures. Nat. Commun. 2021, 12, 4124. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, K.-D. Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics. Photon. Res. 2018, 6, 867–874. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z.-X.; Xiong, H.; Wu, Y. Highly Sensitive Mass Sensing by Means of the Optomechanical Nonlinearity. IEEE Photon. J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Huang, Y.; Flores, J.G.F.; Li, Y.; Wang, W.; Wang, D.; Goldberg, N.; Zheng, J.; Yu, M.; Lu, M.; Kutzer, M.; et al. A Chip-Scale Oscillation-Mode Optomechanical Inertial Sensor Near the Thermodynamical Limits. Laser Photon. Rev. 2020, 14, 1800329. [Google Scholar] [CrossRef]
- Krause, A.G.; Winger, M.; Blasius, T.D.; Lin, Q.; Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photon. 2012, 6, 768–772. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, W.; Wang, S.; Nan, C.; Liu, L.; Bai, Y.; Zhou, Y.; Xing, E.; Tang, J.; Liu, J. Ultra-stable control near the EP in non-Hermitian systems and high-precision angular rate sensing applications. Opt. Express 2023, 32, 79–91. [Google Scholar] [CrossRef]
- Wang, S.; Liu, W.; Tao, Y.; Ding, X.; Nan, C.; Zhou, Y.; Liu, L.; Bai, Y.; Xing, E.; Tang, J.; et al. A Novel Highly Sensitive Angular Rate Sensor Employing Anti-Parity-Time Symmetry. J. Light Technol. 2024, 42, 3884–3890. [Google Scholar] [CrossRef]
- Wu, M.; Wu, N.L.-Y.; Firdous, T.; Sani, F.F.; Losby, J.E.; Freeman, M.R.; Barclay, P.E. Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. Nat. Nanotechnol. 2017, 12, 127–131. [Google Scholar] [CrossRef]
- Hu, Z.-G.; Gao, Y.-M.; Liu, J.-F.; Yang, H.; Wang, M.; Lei, Y.; Zhou, X.; Li, J.; Cao, X.; Liang, J.; et al. Picotesla-sensitivity microcavity optomechanical magnetometry. Light Sci. Appl. 2024, 13, 279. [Google Scholar] [CrossRef]
- Flores, J.G.F.; Yerebakan, T.; Wang, W.; Yu, M.; Kwong, D.; Matsko, A.; Wong, C.W. Parametrically Driven Inertial Sensing in Chip-Scale Optomechanical Cavities at the Thermodynamical Limits with Extended Dynamic Range. Laser Photon. Rev. 2023, 17, 2200827. [Google Scholar] [CrossRef]
- Huang, Y.; Flores, J.G.F.; Cai, Z.; Wu, J.; Yu, M.; Kwong, D.-L.; Wen, G.; Churchill, L.; Wong, C.W. Controllable optomechanical coupling and Drude self-pulsation plasma locking in chip-scale optomechanical cavities. Opt. Express 2017, 25, 6851–6859. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, X.; Chen, D.; Zhang, S.; Xian, C.; Kuang, P.; Wang, Y.; Chen, K.; Qiu, G.; Deng, G.; et al. A Chip-Scale Silicon Cavity Optomechanical Accelerometer With Extended Frequency Range. IEEE Sens. J. 2024, 24, 31849–31859. [Google Scholar] [CrossRef]
- Muhammad, S.; Chen, D.; Xian, C.; Zhou, J.; Lei, Z.; Kuang, P.; Li, Z.; Wen, G.; Huang, Y. Design and Fabrication of High-Quality Two-Dimensional Silicon-Based Photonic Crystal Optical Cavity with Integrated Waveguides. Photonics 2024, 11, 753. [Google Scholar] [CrossRef]
- Yamamoto, T.; Notomi, M.; Taniyama, H.; Kuramochi, E.; Yoshikawa, Y.; Torii, Y.; Kuga, T. Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab. Opt. Express 2008, 16, 13809–13817. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wu, J.; Flores, J.G.F.; Yu, M.; Kwong, D.-L.; Wen, G.; Wong, C.W. Synchronization in air-slot photonic crystal optomechanical oscillators. Appl. Phys. Lett. 2017, 110, 111107. [Google Scholar] [CrossRef]
- Yang, J.; Gu, T.; Zheng, J.; Yu, M.; Lo, G.-Q.; Kwong, D.-L.; Wong, C.W. Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities. Appl. Phys. Lett. 2014, 104, 061104. [Google Scholar] [CrossRef]
- Johnson, T.J.; Borselli, M.; Painter, O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express 2006, 14, 817–831. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liu, J.; Zhang, Y.; Xian, C.; Wang, Y.; Chen, K.; Qiu, G.; Deng, G.; Huang, Y.; Fan, B. Parameter Study of 500 nm Thick Slot-Type Photonic Crystal Cavities for Cavity Optomechanical Sensing. Photonics 2025, 12, 584. https://doi.org/10.3390/photonics12060584
Li Z, Liu J, Zhang Y, Xian C, Wang Y, Chen K, Qiu G, Deng G, Huang Y, Fan B. Parameter Study of 500 nm Thick Slot-Type Photonic Crystal Cavities for Cavity Optomechanical Sensing. Photonics. 2025; 12(6):584. https://doi.org/10.3390/photonics12060584
Chicago/Turabian StyleLi, Zhe, Jun Liu, Yi Zhang, Chenguwei Xian, Yifan Wang, Kai Chen, Gen Qiu, Guangwei Deng, Yongjun Huang, and Boyu Fan. 2025. "Parameter Study of 500 nm Thick Slot-Type Photonic Crystal Cavities for Cavity Optomechanical Sensing" Photonics 12, no. 6: 584. https://doi.org/10.3390/photonics12060584
APA StyleLi, Z., Liu, J., Zhang, Y., Xian, C., Wang, Y., Chen, K., Qiu, G., Deng, G., Huang, Y., & Fan, B. (2025). Parameter Study of 500 nm Thick Slot-Type Photonic Crystal Cavities for Cavity Optomechanical Sensing. Photonics, 12(6), 584. https://doi.org/10.3390/photonics12060584