Design and Research of Large-Scale Curvature Adjustment Optical Mirror
Abstract
:1. Introduction
2. Parametric Modeling and Mathematical Description
2.1. Parametric Modeling Theory
2.2. Piezoelectric Effect-Equivalent Thermal Simulation
2.3. Actuator-Integrated Layout
2.4. Segmented Mirror Modeling and Optimization
2.5. Calculation of Curvature Radius Variation
3. Analysis of Curvature Radius Variation
4. Experimental Setup
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gallagher, B.B.; Knight, J.S.; Acton, D.S.; Smith, K.Z.; Wolf, E.; Coppock, E.; Tersigni, J.; Comeau, T.; Chonis, T.S. Characterization and calibration of the James Webb space telescope mirror actuators fine stage motion. Proc. SPIE 2018, 10698, 106983S. [Google Scholar]
- Wu, S.; Dong, J.; Xu, S.; Xu, B. Overview of Active Support Technology for Main Mirror of Segmented Telescopes. Laser Optoelectron. Prog. 2021, 58, 72–83. [Google Scholar]
- Liao, C.; Yu, F.; Liu, C. Research on the Decoupling Control Method of Segmented Deformable Mirror Surface Shape. Spacecr. Recovery Remote Sens. 2022, 43, 69–78. [Google Scholar]
- Jiang, H. Overview of adaptive optics development. Opto-Electron. Eng. 2018, 45, 170489. [Google Scholar]
- Guan, C.; Zhang, X.; Deng, J.; Xue, L.; Zhang, Y.; Zhou, H.; Fan, X.; Cheng, L.; Fan, J.; He, G.; et al. Deformable mirror technologies at Institute of Optics and Electronics, Chinese Academy of Sciences. Opto-Electron. Eng. 2020, 47, 200337. [Google Scholar]
- Chaney, D.M.; Hadaway, J.B.; Lewis, J.A. Cryogenic radius of curvature matching for the JWST primary mirror segments. In Astronomical and Space Optical Systems; International Society for Optics and Photonics: Bellingham, DC, USA, 2009; Volume 7439, p. 743916. [Google Scholar]
- Wolf, E.M.; Gallagher, B.B.; Knight, J.S.; Chonis, T.S.; Sullivan, J.F.; Smith, K.Z.; Rudeen, A.; Babcock, K.; Hardy, B.; Barto, A.; et al. JWST mirror and actuator performance at cryo-vacuum. In Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Austin, TX, USA, 10–15 June 2018; pp. 84–97. [Google Scholar]
- Redding, D. Large Segmented Apertures in Space: Active vs. Passive. 2018. Available online: https://kiss.caltech.edu/special_events/JPL_MPIA/presentations/2_Redding.pdf (accessed on 9 April 2018).
- Perrin, M.D.; Acton, D.S.; Lajoie, C.P.; Knight, J.S.; Lallo, M.D.; Allen, M.; Baggett, W.; Barker, E.; Comeau, T.; Coppock, E.; et al. Preparing for JWST Wavefront Sensing and Control Operations. Astron. Telesc. + Instrum. 2016, 9904, 142–160. [Google Scholar]
- Hirose, M.; Kumeta, A.; Miyamura, N.; Sato, S.; Mizutani, T.; Kimura, T. Wavefront Correction Using MEMS Deformable Mirror for Earth Observation Satellite with Large Segmented Telescope. Proc. Adapt. Opt. Syst. VII 2020, 11448, 1440–1448. [Google Scholar]
- Kimura, T.; Mizutani, T.; Shirasawa, Y.; Sakai, M.; Kumeta, A.; Sato, S.; Miyamura, N.; Iwasaki, A. Geostationary Earth Observation Satellite with Large Segmented Telescope. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5895–5897. [Google Scholar]
- Fujii, Y.; Uno, T.; Ariki, S.; Suehiro, K.; Itakura, S.; Imaki, M.; Mizutani, T.; Sato, S.; Yanagase, K.; Yasuda, S.; et al. Experimental Study of 3.6-meter Segmented-aperture Telescope for Geostationary Earth Observation Satellite. In Proceedings of the International Conference on Space Optics—ICSO 2020, Virtual, 30 March–2 April 2021; Volume 11852, pp. 1034–1043. [Google Scholar]
- Fowler, J.; Haffert, S.Y.; van Kooten, M.A.; Landman, R.; Bidot, A.; Hours, A.; N’Diaye, M.; Absil, O.; Altinier, L.; Baudoz, P.; et al. Visible extreme adaptive optics on extremely large telescopes: Towards detecting oxygen in Proxima Centauri b and analogs. Opt. Eng. + Appl. 2023, 12680, 594–604. [Google Scholar]
- Haber, A. A novel method for adaptive control of deformable mirrors. In Adaptive Optics and Wavefront Control for Biological Systems VIII; SPIE: Bellingham, WA, USA, 2022. [Google Scholar]
- Su, D.; Cui, X. Active optics in LAMOST. Chin. J. Astron. Astrophys. 2004, 4, 1. [Google Scholar]
- Chen, J.; Wang, C.; Huo, T. Research on detection method of large-aperture aspheric surface by laser tracker. J. Appl. Opt. 2021, 42, 299–303. [Google Scholar]
- Pang, Z.; Zong, X.; Du, J. A method measuring geometric parameters for large-aperture aspheric surface with the laser tracker. Spacecr. Recovery Remote Sens. 2020, 41, 47–59. [Google Scholar]
- Shi, Y.; Niu, D.; Wang, M.; Pan, C. Research on Micro-displacement Actuator for High Precision Mirror Position Control. Astron. Res. Technol. 2023, 20, 250–257. [Google Scholar]
- Liu, Y.; Zhang, J.; Yang, F. Review on primary mirror segment position actuator of large optical telescope. Laser Infrared 2021, 51, 131–140. [Google Scholar]
- Jordan, E.O. Design and Shape Control of Lightweight Mirrors for Dynamic Performance and Athermalization. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2007. [Google Scholar]
- Horvath, N.; Davies, M. Advancing lightweight mirror design: A paradigm shift in mirror preforms by utilizing design for additive manufacturing. Appl. Opt. 2021, 60, 681. [Google Scholar] [CrossRef] [PubMed]
- Cohan, L.E. Integrated Modeling and Design of Lightweight, Active Mirrors for Launch Survival and On-Orbit Performance. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. [Google Scholar]
- Li, A.; Jiang, X.; Sun, J.; Bian, Y.; Wang, L.; Liu, L. Radial support analysis for large-aperture rotating wedge prism. Opt. Laser Technol. 2012, 44, 1881–1888. [Google Scholar] [CrossRef]
- Duma, V.-F.; Duma, M.-A. Optomechanical Analysis and Design of Polygon Mirror-Based Laser Scanners. Appl. Sci. 2022, 12, 5592. [Google Scholar] [CrossRef]
Maximum Displacement Deformation | Reinforcing Rib Length (L) | Actuator Length (l) | Actuator Proportion (l/L) |
---|---|---|---|
0.1 mm | 243 mm | 41.3 × 1 = 41.3 mm | 0.17 |
41.3 × 2 = 82.6 mm | 0.34 | ||
41.3 × 3 = 123.9 mm | 0.51 | ||
41.3 × 4 = 165.2 mm | 0.68 | ||
41.3 × 5 = 206.5 mm | 0.85 |
Model Parameters | Value |
---|---|
Edge-to-edge distancer | 510 mm |
Actuator axis-to-mirror center distance | 23 mm |
Height of reinforcing ribs | 13 mm |
Number of actuators on the midpoint radial ribs | 1 |
Number of actuators on the vertex radial ribs | 1 |
Number of actuators on the edge ribs | 2 |
Thickness of radial ribs | 3 mm |
Thickness of edge ribs | 3 mm |
Mirror substrate thickness | 3 mm |
Thickness of the Edge Ribs (mm) | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|
RMS value at dROC = 100 mm (nm) | 97.47 | 89.59 | 80.57 | 72.49 | 65.83 | 60.38 | 55.83 |
Input | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 |
---|---|---|---|---|---|---|
Actuator variation (μm) | 2.5 | 5 | 7.5 | 10 | 12.5 | 15 |
Parametric Variables | Value | ||||||
---|---|---|---|---|---|---|---|
Actuator variation (μm) | 0 | 2.5 | 5 | 7.5 | 10 | 12.5 | 15 |
Radius of curvature (mm) | 9100 | 9070.22 | 9039.73 | 9011.08 | 8980.25 | 8952.71 | 8921.55 |
Input | Curvature Radius Variation (mm) | Radius of Curvature (mm) | 1 μm Stroke Corresponds to Actuator Variation (mm) |
---|---|---|---|
Before charging | 0 | 9107.46 | — |
5 μm stroke | −57.69 | 9049.77 | −11.54 |
10 μm stroke | −56.97 | 8992.80 | −11.39 |
15 μm stroke | −32.23 | 8960.57 | −6.45 |
10 μm closed-loop return stroke | 40.33 | 9000.90 | 8.07 |
0 μm closed-loop return stroke | 90.00 | 9090.90 | 9.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Song, L.; Sun, D.; Huang, Q.; Guo, R.; Tian, G.; He, J. Design and Research of Large-Scale Curvature Adjustment Optical Mirror. Photonics 2025, 12, 338. https://doi.org/10.3390/photonics12040338
Zhao K, Song L, Sun D, Huang Q, Guo R, Tian G, He J. Design and Research of Large-Scale Curvature Adjustment Optical Mirror. Photonics. 2025; 12(4):338. https://doi.org/10.3390/photonics12040338
Chicago/Turabian StyleZhao, Kailun, Liuxing Song, Dewei Sun, Qiaolin Huang, Rongguang Guo, Guoliang Tian, and Jinping He. 2025. "Design and Research of Large-Scale Curvature Adjustment Optical Mirror" Photonics 12, no. 4: 338. https://doi.org/10.3390/photonics12040338
APA StyleZhao, K., Song, L., Sun, D., Huang, Q., Guo, R., Tian, G., & He, J. (2025). Design and Research of Large-Scale Curvature Adjustment Optical Mirror. Photonics, 12(4), 338. https://doi.org/10.3390/photonics12040338