Optical Differentiation and Edge Detection Based on Birefringence of Uniaxial Crystals
Abstract
:1. Introduction
2. Theoretical Model
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansson, S.O. Technology and mathematics. Philos. Technol. 2020, 33, 117–139. [Google Scholar]
- Zangeneh-Nejad, F.; Sounas, D.L.; Alù, A.; Fleury, R. Analogue computing with metamaterials. Nat. Rev. Mater. 2021, 6, 207–225. [Google Scholar]
- Huang, Y.D. Twenty years of photonics. ACS Photonics 2021, 8, 384–385. [Google Scholar]
- Vourkas, I.; Stathis, D.; Sirakoulis, G.C. Massively parallel analog computing: Ariadne’s thread was made of memristors. IEEE Trans. Emerg. Top. Comput. 2018, 6, 145–155. [Google Scholar]
- Santagiustina, M.; Chin, S.; Primerov, N.; Ursini, L.; Thévenaz, L. All-optical signal processing using dynamic Brillouin gratings. Sci. Rep. 2013, 3, 1594. [Google Scholar]
- He, S.; Wang, R.; Luo, H. Computing metasurfaces for all-optical image processing: A brief review. Nanophotonics 2022, 11, 1083–1108. [Google Scholar] [PubMed]
- Silva, A.; Monticone, F.; Castaldi, G.; Galdi, V.; Alù, A.; Engheta, N. Performing mathematical operations with metamaterials. Science 2014, 343, 160–163. [Google Scholar]
- Zhou, J.; Qian, H.; Chen, C.F.; Zhao, J.; Li, G.; Wu, Q.; Luo, H.; Wen, S.; Liu, Z. Optical edge detection based on high-efficiency dielectric metasurface. Proc. Natl. Acad. Sci. USA 2019, 116, 11137–11140. [Google Scholar]
- Cordaro, A.; Kwon, H.; Sounas, D.; Koenderink, A.F.; Alù, A.; Polman, A. High-index dielectric metasurfaces performing mathematical operations. Nano Lett. 2019, 19, 8418–8423. [Google Scholar]
- Komar, A.; Aoni, R.A.; Xu, L.; Rahmani, M.; Miroshnichenko, A.E.; Neshev, D.N. Edge detection with Mie-resonant dielectric metasurfaces. ACS Photonics 2021, 8, 864–871. [Google Scholar]
- He, Q.; Zhang, F.; Pu, M.B.; Ma, X.L.; Li, X.; Jin, J.J.; Guo, Y.H.; Luo, X.G. Monolithic metasurface spatial differentiator enabled by asymmetric photonic spin-orbit interactions. Nanophotonics 2020, 10, 741–748. [Google Scholar] [CrossRef]
- Kwon, H.; Cordaro, A.; Sounas, D.; Polman, A.; Alù, A. Dual-polarization analog 2D image processing with nonlocal metasurfaces. ACS Photonics 2020, 7, 1799–1805. [Google Scholar] [CrossRef]
- Wang, R.S.; He, S.S.; Chen, S.Z.; Shu, W.X.; Wen, S.C.; Luo, H.L. Computing metasurfaces enabled chiral edge image sensing. iScience 2022, 25, 104532. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Xu, W.; Yang, Q.; Zhang, W.; Wen, S.; Luo, H. All-optical object identification and three-dimensional reconstruction based on optical computing metasurface. Opto-Electron. Adv. 2023, 6, 230120. [Google Scholar] [CrossRef]
- Zong, M.; Liu, Y.; Lü, J.; Zhang, S.; Xu, Z. Two-dimensional optical differentiator for broadband edge detection based on dielectric metasurface. Opt. Lett. 2023, 48, 1902–1905. [Google Scholar] [CrossRef]
- Golovastikov, N.V.; Bykov, D.A.; Doskolovich, L.L. Resonant diffraction gratings for spatial differentiation of optical beams. Quantum Electron. 2014, 44, 984–988. [Google Scholar] [CrossRef]
- Parthenopoulos, A.; Darki, A.A.; Jeppesen, B.R.; Dantan, A. Optical spatial differentiation with suspended subwavelength gratings. Opt. Express 2021, 29, 6481–6494. [Google Scholar] [CrossRef]
- Fang, Y.S.; Ruan, Z.C. Optical spatial differentiator for a synthetic three-dimensional optical field. Opt. Lett. 2018, 43, 5893–5896. [Google Scholar] [CrossRef]
- Xu, C.Y.; Wang, Y.L.; Zhang, C.; Dagens, B.; Zhang, X. Optical spatiotemporal differentiator using a bilayer plasmonic grating. Opt. Lett. 2021, 46, 4418–4421. [Google Scholar] [CrossRef]
- Bezus, E.A.; Doskolovich, L.L.; Bykov, D.A.; Soifer, V.A. Spatial integration and differentiation of optical beams in a slab waveguide by a dielectric ridge supporting high-Q resonances. Opt. Express 2018, 26, 25156–25165. [Google Scholar] [CrossRef]
- Xu, D.; He, S.; Zhou, J.; Chen, S.; Wen, S.; Luo, H. Optical analog computing of two-dimensional spatial differentiation based on the Brewster effect. Opt. Lett. 2020, 45, 6867–6870. [Google Scholar] [PubMed]
- Youssefi, A.; Zangeneh-Nejad, F.; Abdollahramezani, S.; Khavasi, A. Analog computing by Brewster effect. Opt. Lett. 2016, 41, 3467–3470. [Google Scholar]
- Xu, D.; He, S.; Zhou, J.; Chen, S.; Wen, S.; Luo, H. Goos-Hänchen effect enabled optical differential operation and image edge detection. Appl. Phys. Lett. 2020, 116, 211103. [Google Scholar] [CrossRef]
- Zhu, T.; Lou, Y.; Zhou, Y.; Zhang, J.; Huang, J.; Li, Y.; Luo, H.; Wen, S.; Zhu, S.; Gong, Q.; et al. Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection. Phys. Rev. Appl. 2019, 11, 034043. [Google Scholar]
- He, S.; Zhou, J.; Chen, S.; Shu, W.; Luo, H.; Wen, S. Spatial differential operation and edge detection based on the geometric spin Hall effect of light. Opt. Lett. 2020, 45, 877–880. [Google Scholar]
- Wang, R.; He, S.; Luo, H. Photonic spin-Hall differential microscopy. Phys. Rev. Appl. 2022, 18, 044016. [Google Scholar] [CrossRef]
- Zhu, T.; Guo, C.; Huang, J.; Wang, H.; Orenstein, M.; Ruan, Z.; Fan, S. Topological optical differentiator. Nat. Commun. 2021, 12, 680. [Google Scholar] [CrossRef] [PubMed]
- Song, B.W.; Wen, S.C.; Shu, W.X. Topological differential microscopy based on the spin-orbit interaction of light in a natural crystal. ACS Photonics 2022, 9, 3987–3994. [Google Scholar] [CrossRef]
- Dai, C.; Li, Z.; Shi, Y.; Wan, S.; Hu, W.; Li, Z. Hydrogel-scalable nanoslide for switchable optical spatial-frequency processing. Laser Photon. Rev. 2023, 17, 2200368. [Google Scholar] [CrossRef]
- Ji, Y.W.; Ma, X.K.; Hu, H.J.; Li, X.Z. Enhanced edge detection based on spin Hall effect in the uniaxial crystal. Front. Phys. 2022, 10, 862156. [Google Scholar]
- Yang, H.; Xie, W.; Chen, H.; Xie, M.; Tang, J.; Zheng, H.; Zhong, Y.; Yu, J.; Chen, Z.; Zhu, W. Spin-orbit optical broadband achromatic spatial differentiation imaging. Optica 2024, 11, 1008. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Shaked, N.T.; Zalevsky, Z.; Satterwhite, L.L. Biomedical Optical Phase Microscopy and Nanoscopy; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Liang, X.; Zhu, D.; Dai, Q.; Xie, Y.; Zhou, Z.; Peng, C.; Li, Z.; Chen, P.; Lu, Y.Q.; Yu, S.; et al. All-Optical Multi-Order Multiplexing Differentiation Based on Dynamic Liquid Crystals. Laser Photon. Rev. 2024, 18, 2400032. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, D.; Chen, S.; Wen, S.; Luo, H. Reconstruction of wave function via spin-orbit interaction of light. Phys. Rev. Appl. 2023, 20, 054011. [Google Scholar]
- Zhu, J.; Wang, A.; Liu, X.; Liu, Y.; Zhang, Z.; Gao, F. Reconstructing the wave function through the momentum weak value. Phys. Rev. A 2021, 104, 032221. [Google Scholar]
- Liu, J.; Yang, Q.; Chen, S.; Xiao, Z.; Wen, S.; Luo, H. Intrinsic Optical Spatial Differentiation Enabled Quantum Dark-Field Microscopy. Phys. Rev. Lett. 2022, 128, 193601. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Huang, P.; Tang, X.; Yi, X. Optical Differentiation and Edge Detection Based on Birefringence of Uniaxial Crystals. Photonics 2025, 12, 336. https://doi.org/10.3390/photonics12040336
Chen X, Huang P, Tang X, Yi X. Optical Differentiation and Edge Detection Based on Birefringence of Uniaxial Crystals. Photonics. 2025; 12(4):336. https://doi.org/10.3390/photonics12040336
Chicago/Turabian StyleChen, Xu, Ping Huang, Xuan Tang, and Xunong Yi. 2025. "Optical Differentiation and Edge Detection Based on Birefringence of Uniaxial Crystals" Photonics 12, no. 4: 336. https://doi.org/10.3390/photonics12040336
APA StyleChen, X., Huang, P., Tang, X., & Yi, X. (2025). Optical Differentiation and Edge Detection Based on Birefringence of Uniaxial Crystals. Photonics, 12(4), 336. https://doi.org/10.3390/photonics12040336