Multi-Spectral and Single-Shot Wavefront Detection Technique Based on Neural Networks
Abstract
1. Introduction
2. Methods
2.1. System Design
2.2. Parameter Analysis
2.2.1. Fabry–Pérot Etalon
2.2.2. Diffractive Optical Element (Diffraction Grating)
2.2.3. Structural Design of SHWFS
2.3. Neural Network Configuration
2.4. Dataset Setup
3. Results and Discussion
3.1. Simulation Results
3.2. Effect of Zernike Order on Reconstruction Accuracy
3.3. Performance Comparison
3.4. Multi-Spectral Research
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| SHWFS | Shack–Hartmann Wavefront Sensor |
| RMS | Root mean squared |
| AO | Adaptive optics |
| STC | Spatio-temporal coupling |
| PFT | Pulse-front tilt |
| PFC | Pulse-front curvature |
| SID4 | Four-wave lateral shearing interferometer |
| CNN | Convolutional neural network |
| DL | Deep learning |
| ResNet | Residual Shrinkage Network |
| NN | Neural networks |
| MSE | Mean squared error |
| BN | Batch Normalization |
| PV | Peak-to-valley |
Appendix A
References
- Lureau, F.; Matras, G.; Chalus, O.; Derycke, C.; Morbieu, T.; Radier, C.; Casagrande, O.; Laux, S.; Ricaud, S.; Rey, G.; et al. High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability. High Power Laser Sci. 2020, 8, e43. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, L.H.; Wang, J.Y.; Wang, C.; Liu, Y.Q.; Gan, Z.B.; Li, W.Q.; Leng, Y.X.; Liang, X.Y.; Li, R.X. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: Sapphire chirped pulse amplification laser system. Opt. Express 2018, 26, 26776–26786. [Google Scholar] [CrossRef] [PubMed]
- Samarkin, V.V.; Alexandrov, A.G.; Galaktionov, I.; Kudryashov, A.; Nikitin, A.N.; Rukosuev, A.L.; Toporovsky, V.V.; Sheldakova, Y. Large-aperture adaptive optical system for correcting wavefront distortions of a petawatt Ti: Sapphire laser beam. Quantum Electron. 2022, 52, 187–194. [Google Scholar] [CrossRef]
- Dai, G.-M. Modified Hartmann-Shack wavefront sensing and iterative wavefront reconstruction. In Proceedings of the Adaptive Optics in Astronomy, Kona, HI, USA, 17–18 March 1994; pp. 562–573. [Google Scholar]
- Fried, D.L. Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements. J. Opt. Soc. Am. 1977, 67, 370–375. [Google Scholar] [CrossRef]
- Roberts, L.C.; Neyman, C.R. Characterization of the AEOS adaptive optics system. Publ. Astron. Soc. Pac. 2002, 114, 1260–1266. [Google Scholar] [CrossRef]
- Liang, J.Z.; Grimm, B.; Goelz, S.; Bille, J.F. Objective Measurement of Wave Aberrations of the Human Eye with the Use of a Hartmann-Shack Wave-Front Sensor. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 1994, 11, 1949–1957. [Google Scholar] [CrossRef]
- Pastrana, E. Adaptive optics for biological imaging. Nat. Methods 2011, 8, 45. [Google Scholar] [CrossRef]
- Dorn, A.; Zappe, H.; Ataman, Ç. Conjugate adaptive optics extension for commercial microscopes. Adv. Photonics Nexus 2024, 3, 056018. [Google Scholar] [CrossRef]
- Ohland, J.B.; Lebas, N.; Deo, V.; Guyon, O.; Mathieu, F.; Audebert, P.; Papadopoulos, D. Apollon Real-Time Adaptive Optics: Astronomy-inspired wavefront stabilization in ultraintense lasers. High Power Laser Sci. 2025, 13, e29. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Dinh, M.; Wang, Z.Y.; Zhang, T.H.; Chen, T.H.; Hsu, C.W. Adaptive optical multispectral matrix approach for label-free high-resolution imaging through complex scattering media. Adv. Photonics 2025, 7, 046008. [Google Scholar] [CrossRef]
- Jolly, S.W.; Gobert, O.; Quéré, F. Spatio-temporal characterization of ultrashort laser beams: A tutorial. J. Opt. 2020, 22, 103501. [Google Scholar] [CrossRef]
- Li, Z.; Tsubakimoto, K.; Yoshida, H.; Nakata, Y.; Miyanaga, N. Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings. Appl. Phys. Express 2017, 10, 102702. [Google Scholar] [CrossRef]
- Li, Z.Y.; Miyanaga, N. Simulating ultra-intense femtosecond lasers in the 3-dimensional space-time domain. Opt. Express 2018, 26, 8453–8469. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Miyanaga, N.; Kawanaka, J. Single-shot real-time detection technique for pulse-front tilt and curvature of femtosecond pulsed beams with multiple-slit spatiotemporal interferometry. Opt. Lett. 2018, 43, 3156–3159. [Google Scholar] [CrossRef] [PubMed]
- Bor, Z. Distortion of Femtosecond Laser-Pulses in Lenses. Opt. Lett. 1989, 14, 119–121. [Google Scholar] [CrossRef]
- Jeandet, A.; Borot, A.; Nakamura, K.; Jolly, S.W.; Gonsalves, A.J.; Tóth, C.; Mao, H.-S.; Leemans, W.P.; Quéré, F. Spatio-temporal structure of a petawatt femtosecond laser beam. J. Phys. Photonics 2019, 1, 035001. [Google Scholar] [CrossRef]
- Long, T.Y.; Wei, L.; Xu, H.T.; Xiao, W. Influence of spatiotemporal coupling distortion on evaluation of pulse-duration-charactrization and focused intensity of ultra-fast and ultra-intensity laser. Acta Phys. Sin. 2022, 71, 174204. [Google Scholar] [CrossRef]
- Li, W.Q.; Gan, Z.B.; Yu, L.H.; Wang, C.; Liu, Y.Q.; Guo, Z.; Xu, L.; Xu, M.; Hang, Y.; Xu, Y.; et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett. 2018, 43, 5681–5684. [Google Scholar] [CrossRef]
- Radier, C.; Chalus, O.; Charbonneau, M.; Thambirajah, S.; Deschamps, G.; David, S.; Barbe, J.; Etter, E.; Matras, G.; Ricaud, S.; et al. 10 PW peak power femtosecond laser pulses at ELI-NP. High Power Laser Sci. 2022, 10, e21. [Google Scholar] [CrossRef]
- Chanteloup, J.C.; Cohen, M. Compact, high resolution, four wave lateral shearing interferometer. Opt. Fabr. Test. Metrol. 2004, 5252, 282–292. [Google Scholar]
- Shack, R.V.; Platt, B.C. Production and Use of a Lenticular Hartmann Screen. J. Opt. Soc. Am. 1971, 656. [Google Scholar]
- Xu, Y.M.; Jin, C.Z.; Pan, L.Z.; He, Y.; Yao, Y.H.; Qi, D.L.; Liu, C.; Shi, J.H.; Sun, Z.R.; Zhang, S.; et al. Single-shot spatial-temporal-spectral complex amplitude imaging via wavelength-time multiplexing. Adv. Photonics 2025, 7, 026004. [Google Scholar] [CrossRef]
- Bowlan, P.; Gabolde, P.; Trebino, R. Directly measuring the spatio-temporal electric field of focusing ultrashort pulses. Opt. Express 2007, 15, 10219–10230. [Google Scholar] [CrossRef]
- Cousin, S.L.; Bueno, J.M.; Forget, N.; Austin, D.R.; Biegert, J. Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann-Shack wavefront sensor. Opt. Lett. 2012, 37, 3291–3293. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Kim, J.I.; Yoon, J.W.; Sung, J.H.; Lee, S.K.; Nam, C.H. Single-shot spatiotemporal characterization of a multi-PW laser using a multispectral wavefront sensing method. Opt. Express 2021, 29, 19506–19514. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.B.; Xu, Z.M.; Lam, E.Y. End-to-end deep learning framework for digital holographic reconstruction. Adv. Photonics 2019, 1, 016004. [Google Scholar] [CrossRef]
- Wang, H.D.; Rivenson, Y.; Jin, Y.Y.; Wei, Z.S.; Gao, R.; Günaydin, H.; Bentolila, L.A.; Kural, C.; Ozcan, A. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 2019, 16, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Barbastathis, G.; Ozcan, A.; Situ, G. On the use of deep learning for computational imaging. Optica 2019, 6, 921–943. [Google Scholar] [CrossRef]
- Hu, L.; Hu, S.; Gong, W.; Si, K. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection. Opt. Express 2019, 27, 33504–33517. [Google Scholar] [CrossRef]
- Hu, L.; Hu, S.; Gong, W.; Si, K. Deep learning assisted Shack-Hartmann wavefront sensor for direct wavefront detection. Opt. Lett. 2020, 45, 3741–3744. [Google Scholar] [CrossRef]
- He, Y.L.; Liu, Z.W.; Ning, Y.; Li, J.; Xu, X.J.; Jiang, Z.F. Deep learning wavefront sensing method for Shack-Hartmann sensors with sparse sub-apertures. Opt. Express 2021, 29, 17669–17682. [Google Scholar] [CrossRef]
- Zhao, M.M.; Zhao, W.; Wang, S.; Yang, P.; Yang, K.J.; Lin, H.Q.; Kong, L.X. Centroid-Predicted Deep Neural Network in Shack-Hartmann Sensors. IEEE Photonics J. 2022, 14, 6804810. [Google Scholar] [CrossRef]
- Ziemann, M.R.; Rathbun, I.A.; Metzler, C.A. A learning-based approach to event-based shack-hartmann wavefront sensing. In Proceedings of the Unconventional Imaging, Sensing, and Adaptive Optics 2024, San Diego, CA, USA, 18–23 August 2024; pp. 199–207. [Google Scholar]
- Qiao, C.; Chen, H.Y.; Wang, R.; Jiang, T.; Wang, Y.W.; Li, D. Deep learning-based optical aberration estimation enables offline digital adaptive optics and super-resolution imaging. Photonics Res. 2024, 12, 474–484. [Google Scholar] [CrossRef]
- Tang, H.C.; Men, T.; Liu, X.L.; Hu, Y.D.; Su, J.Q.; Zuo, Y.L.; Li, P.; Liang, J.Y.; Downer, M.C.; Li, Z.Y. Single-shot compressed optical field topography. Light-Sci. Appl. 2022, 11, 244. [Google Scholar] [CrossRef]
- Wirth-Singh, A.; Xiang, J.; Choi, M.; Fröch, J.E.; Huang, L.; Colburn, S.; Shlizerman, E.; Majumdar, A. Compressed meta-optical encoder for image classification. Adv. Photonics Nexus 2025, 4, 026009. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]








| 810 nm/ | 750, 780 and 840 nm | |
| 2nd–6th | ±0.5 μm | ± 0.05 μm |
| 7th–11th | ±0.2 μm | ± 0.02 μm |
| 12th–21st | ±0.1 μm | ± 0.01 μm |
| Wavelength (nm) | 750 | 780 | 810 | 840 |
| Input (RMS/μm) | 0.6365 | 0.6368 | 0.6343 | 0.6373 |
| Predicted (RMS/μm) | 0.6390 | 0.6388 | 0.6366 | 0.6398 |
| Residual (RMS/μm) | 0.0086 | 0.0079 | 0.0090 | 0.0098 |
| Residual (PV/μm) | 0.0607 | 0.0564 | 0.0573 | 0.0605 |
| Wavelength (nm) | 750 | 780 | 810 | 840 |
| 2nd–10nd orders Residual (RMS/μm) | 0.0037 | 0.0038 | 0.0042 | 0.0050 |
| 2nd–10nd orders Residual (PV/μm) | 0.0221 | 0.0221 | 0.0239 | 0.0295 |
| 2nd–21st orders Residual (RMS/μm) | 0.0086 | 0.0079 | 0.0090 | 0.0098 |
| 2nd–21st orders Residual (PV/μm) | 0.0607 | 0.0564 | 0.0573 | 0.0605 |
| 2nd–36nd orders Residual (RMS/μm) | 0.0144 | 0.0143 | 0.0125 | 0.0092 |
| 2nd–36nd orders Residual (PV/μm) | 0.0985 | 0.0975 | 0.0912 | 0.0790 |
| Wavelength (nm) | 750 | 760 | 770 | 780 | 790 | 800 | 810 | 820 | 830 | 840 |
| Input (RMS/μm) | 0.6353 | 0.6362 | 0.6355 | 0.6370 | 0.6355 | 0.6327 | 0.6374 | 0.6379 | 0.6359 | 0.6359 |
| Prediction (RMS/μm) | 0.6371 | 0.6372 | 0.6371 | 0.6389 | 0.6364 | 0.6346 | 0.6374 | 0.6376 | 0.6387 | 0.6387 |
| Residual (RMS/μm) | 0.0110 | 0.0113 | 0.0114 | 0.0133 | 0.0135 | 0.0133 | 0.0135 | 0.0127 | 0.0156 | 0.0124 |
| Residual (PV/μm) | 0.0752 | 0.0763 | 0.0791 | 0.0850 | 0.0841 | 0.0862 | 0.0874 | 0.0840 | 0.0939 | 0.0855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, A.; Fan, M.; Yu, L.; Liang, X. Multi-Spectral and Single-Shot Wavefront Detection Technique Based on Neural Networks. Photonics 2025, 12, 1110. https://doi.org/10.3390/photonics12111110
Li X, Wang A, Fan M, Yu L, Liang X. Multi-Spectral and Single-Shot Wavefront Detection Technique Based on Neural Networks. Photonics. 2025; 12(11):1110. https://doi.org/10.3390/photonics12111110
Chicago/Turabian StyleLi, Xunzheng, Aoyang Wang, Mao Fan, Lianghong Yu, and Xiaoyan Liang. 2025. "Multi-Spectral and Single-Shot Wavefront Detection Technique Based on Neural Networks" Photonics 12, no. 11: 1110. https://doi.org/10.3390/photonics12111110
APA StyleLi, X., Wang, A., Fan, M., Yu, L., & Liang, X. (2025). Multi-Spectral and Single-Shot Wavefront Detection Technique Based on Neural Networks. Photonics, 12(11), 1110. https://doi.org/10.3390/photonics12111110
