Enhancing the Solar-Blind UV Detection Performance of β-Ga2O3 Films Through Oxygen Plasma Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Oxygen Plasma-Treated β-Ga2O3 Photodetectors
2.2. Characterization and Performance Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| SBPDs | Solar-blind photodetectors |
| PPC | Persistent photoconductivity |
| RFMS | Radio frequency magnetron sputtering |
| UV | Ultraviolet |
References
- Ding, M.; Hao, W.; Yu, S.; Liu, Y.; Zou, Y.; Xu, G.; Zhao, X.; Hou, X.; Long, S. Self-Powered p-NiO/n-Ga2O3 Heterojunction Solar-Blind Photodetector with Record De-tectivity and Open Circuit Voltage. IEEE Electron Device Lett. 2022, 44, 277–280. [Google Scholar] [CrossRef]
- Wu, W.; Huang, H.; Wang, Y.; Yin, H.; Han, K.; Zhao, X.; Feng, X.; Zeng, Y.; Zou, Y.; Hou, X. Structure engineering of Ga2O3 photodetectors: A review. J. Phys. D Appl. Phys. 2024, 58, 063003. [Google Scholar] [CrossRef]
- Wang, G.; Wang, H.; Chen, T.; Feng, Y.; Zeng, H.; Guo, L.; Liu, X.; Yang, Y. Enhancing β-Ga2O3-film ultraviolet detectors via RF magnetron sputtering with seed layer insertion on c-plane sapphire substrate. Nanotechnology 2023, 35, 095201. [Google Scholar] [CrossRef]
- Ye, J.; Jin, S.; Cheng, Y.; Xu, H.; Wu, C.; Wu, F.; Guo, D. Photocurrent Ambipolar Behavior in Phase Junction of a Ga2O3 Porous Nanostructure for Solar-Blind Light Control Logic Devices. ACS Appl. Mater. Interfaces 2024, 16, 26512–26520. [Google Scholar] [CrossRef]
- Wu, C.; Wu, F.; Hu, H.; Wang, S.; Liu, A.; Guo, D. Review of self-powered solar-blind photodetectors based on Ga2O3. Mater. Today Phys. 2022, 28, 100883. [Google Scholar] [CrossRef]
- Kaur, D.; Kumar, M. A Strategic Review on Gallium Oxide Based Deep-Ultraviolet Photodetectors: Recent Progress and Future Prospects. Adv. Opt. Mater. 2021, 9, 2002160. [Google Scholar] [CrossRef]
- Xu, H.; Weng, Y.; Chen, K.; Wu, C.; Hu, H.; Guo, D. Ultra-Low BER Encrypted Communication Based on Self-Powered Bipolar Photoresponse Ultraviolet Photodetector. Adv. Opt. Mater. 2024, 13, 2401256. [Google Scholar] [CrossRef]
- Wang, L.K.; Ju, Z.G.; Zhang, J.Y.; Zheng, J.; Shen, D.Z.; Yao, B.; Zhao, D.X.; Zhang, Z.Z.; Li, B.H.; Shan, C.X. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices. Appl. Phys. Lett. 2009, 95, 131113. [Google Scholar] [CrossRef]
- Yang, J.-L.; Liu, K.-W.; Shen, D.-Z. Recent progress of ZnMgO ultraviolet photodetector. Chin. Phys. B 2017, 26, 047308. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, C.; Shan, C. Optoelectronic diamond: Growth, properties, and photodetection applications. Adv. Opt. Mater. 2018, 6, 1800359. [Google Scholar] [CrossRef]
- Su, T.; Xiao, B.; Ai, Z.; Bao, L.; Chen, W.; Shen, Y.; Cheng, Q.; Ostrikov, K. High-rate growth of gallium oxide films by plasma-enhanced thermal oxidation for solar-blind photodetectors. Appl. Surf. Sci. 2023, 624, 157162. [Google Scholar] [CrossRef]
- Tang, M.; Ma, C.; Liu, L.; Tan, X.; Li, Y.; Lee, Y.J.; Wang, G.; Jeon, D.W.; Park, J.H.; Zhang, Y.; et al. β-Ga2O3 Air-Channel Field-Emission Nanodiode with Ultrahigh Current Density and Low Turn-On Voltage. Nano Lett. 2024, 24, 1769–1775. [Google Scholar] [CrossRef]
- Kumar, S.; Dhara, S.; Agarwal, R.; Singh, R. Study of photoconduction properties of CVD grown β-Ga2O3 nanowires. J. Alloys Compd. 2016, 683, 143–148. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, G.; Zhang, X.; Wu, C.; Xia, Z.; Hu, H.; Wu, F.; Guo, D.; Wang, S. Polarization-Sensitive Artificial Optoelectronic Synapse Based on Anisotropic β-Ga2O3 Single Crystal for Neuromorphic Vision Systems and Information Encryption. Adv. Opt. Mater. 2025, 13, 2402238. [Google Scholar] [CrossRef]
- Wang, C.; Fan, W.-H.; Zhang, Y.-C.; Kang, P.-C.; Wu, W.-Y.; Wu, D.-S.; Lien, S.-Y.; Zhu, W.-Z. Effect of oxygen flow ratio on the performance of RF magnetron sputtered Sn-doped Ga2O3 films and ultraviolet photodetector. Ceram. Int. 2022, 49, 10634–10644. [Google Scholar] [CrossRef]
- Deng, L.; Hu, H.; Wang, Y.; Wu, C.; He, H.; Li, J.; Luo, X.; Zhang, F.; Guo, D. Surface plasma treatment reduces oxygen vacancies defects states to control photogenerated carriers transportation for enhanced self-powered deep UV photoelectric characteristics. Appl. Surf. Sci. 2022, 604, 154459. [Google Scholar] [CrossRef]
- Wang, H.; Wang, F.; Xu, T.; Xia, H.; Xie, R.; Zhou, X.; Ge, X.; Liu, W.; Zhu, Y.; Sun, L.; et al. Slowing Hot-Electron Relaxation in Mix-Phase Nanowires for Hot-Carrier Photovoltaics. Nano Lett. 2021, 21, 7761–7768. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, X.; Kim, H.-S.; Kim, T.; Jeon, S.; Kang, H.K.; Choi, W.; Song, J.; Doh, Y.-J.; Yu, D. Hot Carrier Trapping Induced Negative Photoconductance in InAs Nanowires toward Novel Nonvolatile Memory. Nano Lett. 2015, 15, 5875–5882. [Google Scholar] [CrossRef]
- Jiang, M.; Golovynskyi, S.; Chen, J.; Yang, Z.; Lv, T.; Huang, G.; Sun, Z.; Li, L.; Wu, H.; Li, B. High-sensitive solar-blind β-Ga2O3 thin film photodetector deposited by PLD optimizing growth temperature. Vacuum 2025, 238, 114282. [Google Scholar] [CrossRef]
- Freitas, J.A.; Culbertson, J.C.; Nepal, N.; Mock, A.L.; Tadjer, M.J.; Feng, Z.; Zhao, H. Influence of oxygen partial pressure on properties of monoclinic Ga2O3 deposited on sapphire substrates. J. Vac. Sci. Technol. A 2021, 39, 033414. [Google Scholar] [CrossRef]
- Gajdics, M.; Cora, I.; Zámbó, D.; Horváth, Z.E.; Sulyok, A.; Frey, K.; Pécz, B. Evolution of structural and photoluminescent properties of sputter-deposited Ga2O3 thin films during post-deposition heat treatment. J. Alloys Compd. 2025, 1021, 179634. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Y.; Tian, X.; Feng, Q.; Zhang, J.; Hao, Y. First-principles study of Mg-Ge co-doping to realize p-type β-Ga2O3 containing divacancy-interstitial complex defects. Comput. Mater. Sci. 2025, 253, 113849. [Google Scholar] [CrossRef]
- Liu, M.; Kim, H.K. Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma. Appl. Phys. Lett. 2004, 84, 173–175. [Google Scholar] [CrossRef]
- Hu, H.; Wu, C.; Zhao, N.; Zhu, Z.; Li, P.; Wang, S.; Tang, W.; Guo, D. Epitaxial growth and solar-blind photoelectric characteristic of β-Ga2O3 film on various oriented sapphire substrates by plasma-enhanced chemical vapor deposition. Phys. Status Solidi Appl. Mater. Sci. 2021, 218, 2100076. [Google Scholar] [CrossRef]
- Le, A.H.; Kim, Y.; Lee, Y.J.; Hussain, S.Q.; Nguyen, C.P.; Lee, J.; Yi, J. On the origin of the changes in the opto-electrical properties of boron-doped zinc oxide films after plasma surface treatment for thin-film silicon solar cell applications. Appl. Surf. Sci. 2018, 433, 798–805. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, K.; Ai, Q.; Huang, X.; Chen, X.; Zhu, Y.; Yang, J.; Cheng, Z.; Li, B.; Liu, L.; et al. Performance Enhancement of Ga2O3 Solar-Blind UV Photodetector by the Combination of Oxygen Annealing and Plasma Treatment. J. Phys. Chem. C 2022, 126, 21839–21846. [Google Scholar] [CrossRef]
- Qian, L.X.; Liu, H.Y.; Zhang, H.F.; Wu, Z.H.; Zhang, W.L. Simultaneously improved sensitivity and response speed of β-Ga2O3 solar-blind photodetector via localized tuning of oxygen deficiency. Appl. Phys. Lett. 2019, 114, 113506. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Ji, X.; Li, M.; Zhang, J.; Liu, X.; Tian, R.; Lu, C.; Tang, W.; Li, P. High-performance Ga2O3 solar-blind UV photodetectors via film growth regulation and surface state engineering. Mater. Today Phys. 2024, 45, 101461. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Li, H.; Yang, Z.; Zhang, Q.; He, Z.; Huang, X.; Wei, X.; Tang, W.; Huang, W.; et al. p-GaSe/n-Ga2O3 van der Waals Heterostructure Photodetector at Solar-Blind Wavelengths with Ultrahigh Responsivity and Detectivity. ACS Photonics 2021, 8, 2256–2264. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Ji, X.; Yan, Z.; Ye, L.; Zheng, H.; Liu, Y.; Chen, X.; Li, P. Oxygen vacancies modulating performance for Ga2O3 solar-blind photodetectors via low-cost mist chemical vapor deposition. Mater. Today Commun. 2024, 39, 108717. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Feng, Q.; Zhang, Y.; Ning, J.; Zhang, C.; Zhang, J.; Hao, Y. Effects of growth pressure on the characteristics of the β-Ga2O3 thin films deposited on (0001) sapphire substrates. Mater. Sci. Semicond. Process. 2021, 123, 105572. [Google Scholar] [CrossRef]
- Mi, W.; Li, Z.; Luan, C.; Xiao, H.; Zhao, C.; Ma, J. Transparent conducting tin-doped Ga2O3 films deposited on MgAl2O4 (100) substrates by MOCVD. Ceram. Int. 2015, 41, 2572–2575. [Google Scholar] [CrossRef]
- Patil, V.; Lee, B.-T.; Jeong, S.-H. Optical and structural characterization of high crystalline β-Ga2O3 films prepared using an RF magnetron sputtering. J. Alloys Compd. 2022, 894, 162551. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, B.; He, X.; Li, C.; Liang, Z.; Sun, Y.; Cheng, Q. Plasma surface treatment of amorphous Ga2O3 thin films for solar-blind ultraviolet photodetectors. Appl. Surf. Sci. 2024, 678, 161146. [Google Scholar] [CrossRef]
- Wang, L.; Xu, S.; Yang, J.; Huang, H.; Huo, Z.; Li, J.; Xu, X.; Ren, F.; He, Y.; Ma, Y.; et al. Recent Progress in Solar-Blind Photodetectors Based on Ultrawide Bandgap Semiconductors. ACS Omega 2024, 9, 25429–25447. [Google Scholar] [CrossRef]
- Veeralingam, S.; Durai, L.; Yadav, P.; Badhulika, S. Record-High Responsivity and Detectivity of a Flexible Deep-Ultraviolet Photodetector Based on Solid State-Assisted Synthesized hBN Nanosheets. ACS Appl. Electron. Mater. 2021, 3, 1162–1169. [Google Scholar] [CrossRef]
- Zeng, Y.; Huang, H.; Zhao, X.; Ding, M.; Hou, X.; Zou, Y.; Du, J.; Liu, J.; Yu, S.; Han, K.; et al. Self-Powered a-SnOX/c-Ga2O3 Pn Heterojunction Solar-Blind Photodetector with High Responsivity and Swift Response Speed. IEEE Electron Device Lett. 2023, 44, 2003–2006. [Google Scholar] [CrossRef]
- Ji, X.Q.; Liu, M.Y.; Yan, Z.Y.; Li, S.; Liu, Z.; Qi, X.H.; Yuan, J.Y.; Wang, J.J.; Zhao, Y.C.; Tang, W.H.; et al. Ultrasensitive and High-Speed Ga2O3 Solar-Blind Photodetection Based on Defect Engineering. IEEE Trans. Electron Devices 2023, 70, 4236–4242. [Google Scholar] [CrossRef]







| Definition of Sample Name | Plasma Treatment Time |
|---|---|
| Pristine | 0 s |
| Plasma-15 s | 15 s |
| Plasma-30 s | 30 s |
| Plasma-1 min | 1 min |
| Plasma-5 min | 5 min |
| Sample | OA(adsorbed oxygen) | OV(vacancy oxygen) | OL(lattice oxygen) | τr/τd | Peak II/Peak I | D* | R | PDCR |
|---|---|---|---|---|---|---|---|---|
| Pristine | 17.61% | 66.6% | 15.89% | 2.92 s/1.35 s | 3.00 | 7.63 × 109 cm·Hz1/2W−1 | 1.4 mA/W | 1.06 × 105 |
| Plasma-15 s | 19.86% | 54.9% | 25.24% | 1.17 s/0.98 s | 1.91 | - | - | 1.63 × 105 |
| Plasma-30 s | 21.62% | 51% | 27.38% | 0.76 s/0.96 s | 1.51 | - | - | 3.4 × 105 |
| Plasma-1 min | 28.18% | 46.8% | 25.02% | 0.41 s/0.17 s | 1.02 | 2.62 × 1010 cm·Hz1/2W−1 | 1.95 mA/W | 9.18 × 105 |
| Plasma-5 min | 27.68% | 52.1% | 20.22% | 1.18 s/1.57 s | 1.41 | - | - | 4.7 × 105 |
| Device | Method | Idark | PDCR | τr/τd | D* | R | Ref |
|---|---|---|---|---|---|---|---|
| β-Ga2O3 film@3 V | MOCVD | 0.005 pA | 5.7 × 106 | 0.063 s/0.089 s | 3.1 × 1014 cm·Hz1/2W−1 | 17.7 A/W | [38] |
| β-Ga2O3 film@10 V | MOCVD | 2.9 × 10−2 nA | - | 1.17 s/0.98 s | 9 × 1015 cm·Hz1/2W−1 | 38.82 A/W | [26] |
| β-Ga2O3 film@10 V | RFMS | 0.0032 pA | 2.7 × 107 | 0.54 s/0.92 s | - | - | [28] |
| α-Ga2O3 film@10 V | RFMS | 3.6 μA | 19.4 | 0.89 s/1.08 s | 3.41 × 1010 cm·Hz1/2W−1 | 9.63 A/W | [34] |
| β-Ga2O3 film@10 V | RFMS | 0.378 pA | 9.18 × 105 | 0.41 s/0.17 s | 2.62 × 1010 cm·Hz1/2W−1 | 1.95 mA/W | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, R.; Wang, G.; Guo, L.; Wang, Y.; Zhai, Y.; Liu, X.; Wang, J.; Yang, Y.; Yang, X. Enhancing the Solar-Blind UV Detection Performance of β-Ga2O3 Films Through Oxygen Plasma Treatment. Photonics 2025, 12, 1074. https://doi.org/10.3390/photonics12111074
Duan R, Wang G, Guo L, Wang Y, Zhai Y, Liu X, Wang J, Yang Y, Yang X. Enhancing the Solar-Blind UV Detection Performance of β-Ga2O3 Films Through Oxygen Plasma Treatment. Photonics. 2025; 12(11):1074. https://doi.org/10.3390/photonics12111074
Chicago/Turabian StyleDuan, Rongxin, Guodong Wang, Lanlan Guo, Yuechao Wang, Yumeng Zhai, Xiaolian Liu, Junjun Wang, Yingli Yang, and Xiaojie Yang. 2025. "Enhancing the Solar-Blind UV Detection Performance of β-Ga2O3 Films Through Oxygen Plasma Treatment" Photonics 12, no. 11: 1074. https://doi.org/10.3390/photonics12111074
APA StyleDuan, R., Wang, G., Guo, L., Wang, Y., Zhai, Y., Liu, X., Wang, J., Yang, Y., & Yang, X. (2025). Enhancing the Solar-Blind UV Detection Performance of β-Ga2O3 Films Through Oxygen Plasma Treatment. Photonics, 12(11), 1074. https://doi.org/10.3390/photonics12111074

