Trillion-Frame-Rate All-Optical Sectioning Three-Dimensional Holographic Imaging
Abstract
1. Introduction
2. Theory and Experiment
2.1. Theory
2.2. Experimental
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A

Appendix B

Appendix C

References
- Kaiser, A.; Ybanez Zepeda, J.A.; Boubekeur, T. A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data. Comput. Graph. Forum 2019, 38, 167–196. [Google Scholar] [CrossRef]
- Wang, Z.; Miccio, L.; Coppola, S.; Bianco, V.; Memmolo, P.; Tkachenko, V.; Ferraro, P. Digital holography as metrology tool at micro-nanoscale for soft matter. Light Adv. Manuf. 2022, 3, 151–176. [Google Scholar] [CrossRef]
- Chuang, S.C.; Yu, S.A.; Hung, P.C.; Lu, H.T.; Nguyen, H.T.; Chuang, E.Y. Biological Photonic Devices Designed for the Purpose of Bio-Imaging with Bio-Diagnosis. Photonics 2023, 10, 1124. [Google Scholar] [CrossRef]
- Tian, M.; He, X.; Jin, C.; He, X.; Wu, S.; Zhou, R.; Zhang, X.; Zhang, K.; Gu, W.; Wang, J.; et al. Transpathology: Molecular Imaging-Based Pathology. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2338–2350. [Google Scholar] [CrossRef]
- Zhou, Y.; Nakagawa, A.; Sonoshita, M.; Tearney, G.J.; Ozcan, A.; Goda, K. Emergent photonics for cardiovascular health. Nat. Photon 2025, 19, 671–680. [Google Scholar] [CrossRef]
- Huang, K.; Wu, X.; Lin, Z. An Advanced Laboratorial Measurement Technique of Scour Topography Based on the Fusion Method for 3D Reconstruction. J. Ocean. Eng. Sci. 2025, 10, 322–329. [Google Scholar] [CrossRef]
- Deng, Q.; Zhan, Y.; Liu, C.; Qiu, Y.; Zhang, A. Multiscale power spectrum analysis of 3D surface texture for prediction of asphalt pavement friction. Constr. Build. Mater. 2021, 293, 123506. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, G.; Zuo, Y.; Chen, X.; Hu, H. A Comprehensive Review of Vision-Based 3D Reconstruction Methods. Sensors 2024, 24, 2314. [Google Scholar] [CrossRef] [PubMed]
- Park, H.K.; Choi, M.J.; Kim, M.; Kim, M.; Lee, J.; Lee, D.; Lee, W.; Yun, G. Advances in Physics of the Magneto-Hydro-Dynamic and Turbulence-Based Instabilities in Toroidal Plasmas via 2-D/3-D Visualization. Rev. Mod. Plasma Phys. 2022, 6, 18. [Google Scholar] [CrossRef]
- Pierrard, V.; Botek, E.; Darrouzet, F. Improving predictions of the 3D dynamic model of the plasmasphere. Front. Astron. Space 2012, 8, 681401. [Google Scholar] [CrossRef]
- Gabor, D. Holography, 1948–1971. Science 1972, 177, 299–313. [Google Scholar] [CrossRef]
- De la Torre, M.H.I.; Mendoza Santoyo, F.; Flores, J.M.M.; del Socorro, H.-M. Gabor’s holography: Seven decades influencing optics. Appl. Opt. 2022, 61, 225–236. [Google Scholar] [CrossRef]
- Huang, Z.; Cao, L. Quantitative phase imaging based on holography: Trends and new perspectives. Light Sci. Appl. 2024, 13, 145. [Google Scholar] [CrossRef]
- Rosen, J.; Alford, S.; Allan, B.; Anand, V.; Arnon, S.; Arockiaraj, F.G.; Art, J.; Bai, B.; Balasubramaniam, G.M.; Birnbaum, T.; et al. Roadmap on computational methods in optical imaging and holography. Appl Phys. B 2024, 130, 166. [Google Scholar] [CrossRef]
- Latif, S.; Kim, J.; Khaliq, H.S.; Mahmood, N.; Ansari, M.A.; Chen, X.; Akbar, J.; Badloe, T.; Zubair, M.; Massoud, Y.; et al. Spin-selective angular dispersion control in dielectric metasurfaces for multichannel meta-holographic displays. Nano Lett. 2024, 24, 708–714. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.J. Digital in-Line Holographic Microscopy for Label-Free Identification and Tracking of Biological Cells. Mil. Med. Res. 2024, 11, 38. [Google Scholar] [CrossRef]
- Liang, J.; Légaré, F.; Calegari, F. Ultrafast imaging. Ultrafast Sci. 2024, 4, 0059. [Google Scholar] [CrossRef]
- Balasubramani, V.; Kuś, A.; Tu, H.Y.; Cheng, C.J.; Baczewska, M.; Krauze, W.; Kujawińska, M. Holographic tomography: Techniques and biomedical applications. Appl. Opt. 2021, 60, B65–B80. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Thoroddsen, S.T.; Chen, N. Single-shot high-density volumetric particle imaging enabled by differentiable holography. IEEE Trans. Ind. Inform. 2024, 20, 13696–13706. [Google Scholar] [CrossRef]
- Pearce, E.; Wolley, O.; Mekhail, S.P.; Gregory, T.; Gemmell, N.R.; Oulton, R.F.; Clark, A.S.; Phillips, C.C.; Padgett, M.J. Single-frame transmission and phase imaging using off-axis holography with undetected photons. Sci. Rep. UK 2024, 14, 16008. [Google Scholar] [CrossRef]
- Xia, X.; Ma, D.; Meng, X.; Qu, F.; Zheng, H.; Yu, Y.; Peng, Y. Off-axis holographic augmented reality displays with HOE-empowered and camera-calibrated propagation. Photonics Res. 2025, 13, 687–697. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Y.; Zhang, J.; Liu, J.P.; Poon, T.C. Off-axis optical scanning holography. J. Opt. Soc. Am. A 2022, 39, A44–A51. [Google Scholar] [CrossRef]
- Lam, H.; Zhu, Y.; Buranasiri, P. Off-Axis Holographic Interferometer with Ensemble Deep Learning for Biological Tissues Identification. Appl. Sci. 2022, 12, 12674. [Google Scholar] [CrossRef]
- Li, H.; Xu, X.; Xue, M.; Ren, Z. High-quality phase imaging by phase-shifting digital holography and deep learning. Appl. Opt. 2024, 63, G63–G72. [Google Scholar] [CrossRef]
- Tahara, T.; Shimobaba, T. High-Speed Phase-Shifting Incoherent Digital Holography (Invited). Appl. Phys. B 2023, 129, 96. [Google Scholar] [CrossRef]
- Takase, Y.; Shimizu, K.; Mochida, S.; Inoue, T.; Nishio, K.; Rajput, S.K.; Matoba, O.; Xia, P.; Awatsuji, Y. High-speed imaging of the sound field by parallel phase-shifting digital holography. Appl. Opt. 2021, 60, A179–A187. [Google Scholar] [CrossRef]
- Shimobaba, T.; Blinder, D.; Birnbaum, T.; Hoshi, I.; Shiomi, H.; Schelkens, P.; Ito, T. Deep-learning computational holography: A review. Front. Photonics 2022, 3, 854391. [Google Scholar] [CrossRef]
- Li, J.; Zhao, L.; Wu, X.; Liu, F.; Wei, Y.; Yu, C.; Shao, X. Computational optical system design: A global optimization method in a simplified imaging system. Appl. Opt. 2022, 61, 5916–5925. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Wang, J.; Chen, N. Align-Free Multi-Plane Phase Retrieval. Opt. Laser Technol. 2025, 181, 111784. [Google Scholar] [CrossRef]
- Xu, C.; Pang, H.; Cao, A.; Deng, Q. Enhanced Multiple-Plane Phase Retrieval Using a Transmission Grating. Opt. Laser Eng. 2022, 149, 106810. [Google Scholar] [CrossRef]
- Gerchberg, R.W.; Saxton, W.O. A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pic tures. Optik 1972, 35, 237–246. [Google Scholar]
- Teague, M.R. Deterministic Phase Retrieval: A Transport of Intensity Approach. J. Opt. Soc. Am. 1983, 73, 1434–1441. [Google Scholar] [CrossRef]
- Pedrini, G.; Osten, W.; Zhang, Y. Wave-Front Reconstruction from a Sequence of Interferograms Recorded at Different Planes. Opt. Lett. 2005, 30, 833–835. [Google Scholar] [CrossRef]
- Almoro, P.F.; Pedrini, G.; Osten, W. Complete Wavefront Reconstruction Using Sequential Intensity Measurements of a Vol ume Speckle Field. Appl. Opt. 2006, 45, 8596–8605. [Google Scholar] [CrossRef]
- Almoro, P.F.; Glückstad, J.; Hanson, S.G. Single-Plane Multiple Speckle Pattern Phase Retrieval Using a Deformable Mirror. Opt. Express 2010, 18, 19304–19313. [Google Scholar] [CrossRef]
- Migukin, A. Wave Field Reconstruction from Multiple Plane Intensity-Only Measurements. J. Opt. Soc. Am. A 2011, 28, 993–1002. [Google Scholar] [CrossRef]
- Buco, C.R.L.; Martinez-Carranza, J.; Garcia-Torales, G.; Toxqui-Quitl, C.; Rivas-Montes, C.; Lopez-Mago, D. Enhanced Multi ple-Plane Phase Retrieval Using Adaptive Intensity Constraints. Opt. Lett. 2019, 44, 3302–3305. [Google Scholar] [CrossRef]
- Xu, C.; Pang, H.; Cao, A.; Deng, Q. Enhancing Multi-Distance Phase Retrieval via Unequal Intervals. Photonics 2021, 8, 48. [Google Scholar] [CrossRef]
- Kim, T.; Kim, T. Coaxial scanning holography. Opt. Lett. 2020, 45, 2046–2049. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.C.; Yu, Y.W.; Hsieh, S.C.; Teng, T.C.; Tsai, M.F. Point spread function of a collinear holographic storage system. Opt. Express 2007, 15, 26–18111. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K.; Schimmel, H.; Wyrowski, F. Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves. J. Opt. Soc. Am. A 2003, 20, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cao, L.; Zhang, H.; Kong, D.; Jin, G. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt. Express 2015, 23, 25440–25449. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Kim, M.K. Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method. Opt. Lett. 2005, 30, 2092–2094. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Chi, Y. Modified Gerchberg–Saxton (G-S) Algorithm and Its Application. Entropy 2020, 22, 1354. [Google Scholar] [CrossRef]
- Campbell, M.T.H.R.G.D.M.; Sharp, D.N.; Harrison, M.T.; Denning, R.G.; Turberfield, A.J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 2000, 404, 53–56. [Google Scholar] [CrossRef]
- Li, Z.; Psaltis, D.; Liu, W.; Johnson, W.R.; Bearman, G. Volume Holographic Spectral Imaging. In Proceedings of the Spectral Imaging: Instrumentation, Applications, and Analysis III, San Jose, CA, USA, 22–27 January 2005; SPIE: Bellingham, WA, USA, 2005; Volume 5694, pp. 33–40. [Google Scholar]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, Q.; Zheng, W.; Li, Z. Trillion-Frame-Rate All-Optical Sectioning Three-Dimensional Holographic Imaging. Photonics 2025, 12, 1051. https://doi.org/10.3390/photonics12111051
Zhang Y, Li Q, Zheng W, Li Z. Trillion-Frame-Rate All-Optical Sectioning Three-Dimensional Holographic Imaging. Photonics. 2025; 12(11):1051. https://doi.org/10.3390/photonics12111051
Chicago/Turabian StyleZhang, Yubin, Qingzhi Li, Wanguo Zheng, and Zeren Li. 2025. "Trillion-Frame-Rate All-Optical Sectioning Three-Dimensional Holographic Imaging" Photonics 12, no. 11: 1051. https://doi.org/10.3390/photonics12111051
APA StyleZhang, Y., Li, Q., Zheng, W., & Li, Z. (2025). Trillion-Frame-Rate All-Optical Sectioning Three-Dimensional Holographic Imaging. Photonics, 12(11), 1051. https://doi.org/10.3390/photonics12111051

