A Review of Sub-Wavelength Wire Grid Polarizers and Their Development Trends
Abstract
1. Introduction
2. Wire Grid Polarizer Design Theory
2.1. Basic Theory of Sub-Wavelength Wire Grid Polarizers
2.2. Design and Simulation Analysis of Sub-Wavelength Wire Grid Polarizers
3. Design of Sub-Wavelength Wire Grid
3.1. Selection of Substrate
3.2. Selection of Wire Grid Materials
3.3. Wire Grid Structural Parameters
3.3.1. Wire Grid Period
3.3.2. Wire Grid Height
3.3.3. Duty Cycle
4. Research Status of Wire Grid Structure
4.1. Research on Single-Layer Structures
4.2. Research on Bilayer Structures
4.3. Research on Multilayer Structures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, W.L.; Sun, Q.J.; Wang, S.H.; Li, J.W.; Dong, Y.B.; Xu, W.B. Influence Analysis of Effect Target Surface Emissivity on Infrared Radiation Polarization Characteristics. Spectrosc. Spectr. Anal. 2017, 37, 737–742. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, H.D.; Jiang, H.L.; Li, Y.C.; Wang, C.; Liu, Z.; Li, G.L. Infrared polarization properties of targets with rough surface. Chin. Opt. 2023, 13, 459–471. [Google Scholar] [CrossRef]
- Sun, Q.J.; Wang, P.; Huang, W.X. Application of infrared polarization imaging in camouflage detection. Infrared 2016, 37, 18–22. [Google Scholar] [CrossRef]
- Wang, X.; Xia, R.Q.; Jin, W.Q.; Liu, J.; Liang, J.A. Technology progress of infrared polarization imaging detection. Infrared Laser Eng. 2014, 43, 3175–3182. [Google Scholar]
- Shi, D.D.; Liu, L.M.; Huang, F.Y.; Wang, X.Z. Research progress in infrared polarization imaging technology. Laser Optoelectron. Prog. 2024, 61, 43–53. [Google Scholar] [CrossRef]
- You, Q.T. Discussion on the development status and future development trend of infrared thermal imaging technology. China Secur. Prot. 2020, 5, 27–29. [Google Scholar]
- Yang, Z.Y.; Lu, G.X.; Zhagn, Z.W.; Song, J.C. Analysis of infrared polarization characteristics of target in thermal radiation environment. Acta Opt. Sin. 2022, 42, 0220001. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.Z.; Shi, Z.L.; Tong, Q.N. Research progress on infrared polarization imaging detection and applications. J. Shanxi Norm. Univ. (Nat. Sci. Ed.) 2025, 53, 67–81. [Google Scholar] [CrossRef]
- Bomzon, Z.; Biener, G.; Kleiner, V.; Hasman, E. Radially and azimuthally polarized beams generated by spaced-variant dielectric subwavelength gratings. Opt. Lett. 2002, 27, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Stafeev, S.S.; Kotlyar, V.V.; Nalimov, A.G.; Kotlyar, M.V.; O’Faolain, L. Subwavelength gratings for polarization conversion and focusing of laser light. Photonics Nanostruct.-Fundam. Appl. 2017, 27, 32–41. [Google Scholar] [CrossRef]
- Bomzon, Z.; Kleiner, V.; Hasman, E. Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings. Appl. Phys. Lett. 2001, 79, 1587–1589. [Google Scholar] [CrossRef]
- Kang, J.; Yun, H.S.; Jang, H.I.; Kim, J.; Park, J.H.; Lee, J.Y. Solution-processed aluminum nanogratings for wire grid polarizers. Adv. Optic. Mater. 2018, 6, 1800205. [Google Scholar] [CrossRef]
- Meng, F.T.; Chu, J.K.; Han, Z.T.; Zhao, K.C. Design of sub-wavelength wire-grid polarizers. Nanotechnol. Precis. Eng. 2007, 5, 269–272. [Google Scholar]
- Hokari, R.; Takakuwa, K.; Kato, H.; Yamamoto, A.; Yamaguchi, Y.; Kurihara, K. Low-reflective wire-grid polariser sheet in the visible region fabricated by a nanoprinting process. Sci. Rep. 2021, 11, 2096. [Google Scholar] [CrossRef]
- Guo, W.R.; Li, Z.W.; Gao, H.T.; Xia, L.P.; Shi, L.F.; Deng, Q.L.; Du, C.L. Design of infrared polarizer based on sub-wavelength metal wire grid. Proc. SPIE 2013, 8759, 87593I. [Google Scholar] [CrossRef]
- Lee, Y.H.; Peranantham, P.; Hwangbo, C.K. Fabrication of a bilayer wire grid polarizer in the near infrared wavelength region by using a UV curing nanoimprinting method. J. Korean Phys. Soc. 2012, 61, 1714–1719. [Google Scholar] [CrossRef]
- Siefke, T.; Kroker, S. Polarization control by deep ultra violet wire grid polarizers. In Optical Characterization of Thin Solid Films; Springer: Berlin/Heidelberg, Germany, 2018; pp. 359–374. [Google Scholar] [CrossRef]
- Siefke, T.; Kley, E.B.; Tunnermann, A.; Kroker, S. Design and fabrication of titanium dioxide wire grid polarizer for the far ultraviolet spectral range. Proc. SPIE 2016, 9927, 992706-1. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Gao, B.P.; Lin, Y.Z.; Ju, X.W.; Wang, J.; Wang, X.F. Metal wire grid terahertz polarizer fabricated by femtosecond laser micro-machining. Chin. J. Lasers 2018, 45, 0802005. [Google Scholar] [CrossRef]
- Liu, L.M.; Zhao, G.Z.; Zhang, G.H.; Wei, B.; Zhang, S.B. Polarization characteristics of one-dimensional metallic wire-grating polarizer in terahertz frequency range. Chin. J. Lasers 2012, 39, 0311001. [Google Scholar] [CrossRef]
- Sun, L.; Lv, Z.H.; Wu, W.; Liu, W.T.; Yuan, J.M. Double-grating polarizer for terahertz radiation with high extinction ratio. Appl. Opt. 2010, 49, 2066. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Yi, N.; Liu, L.; Dong, S.Y.; Chen, Y.F.; Wang, Z.S.; Cheng, X.B. Design and fabrication of highly selective polarizers using metallic-dielectric gratings. Photonics 2023, 10, 52. [Google Scholar] [CrossRef]
- Wang, M.; Cao, B.; Wang, C.H.; Xu, F.Y.; Lou, Y.M.; Wang, J.F.; Xu, K. High linearly polarized light emission from InGaN light-emitting diode with multilayer dielectric/metal wire-grid structure. Appl. Phys. Lett. 2014, 105, 151113. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, J.H.; Zhou, Y. Fabrication of the metal wire-grid polarizer in visible light. Proc. SPIE 2016, 10255, 102554K. [Google Scholar] [CrossRef]
- Ushakova, K.; Assafrao, A.C.; Pereira, S.F.; Urbach, H.P. Near ultraviolet-visible radial wire grid polarizer for tight focusing applications. Opt. Eng. 2015, 54, 104101. [Google Scholar] [CrossRef]
- Zhang, M.E.; Wang, W.T.; Liu, P.A.; Li, X.J.; Liu, J.J.; Hong, Z. Research of sub-wavelength wire-grid terahertz polarizing beam splitters. Laser Technol. 2013, 37, 297–300. [Google Scholar] [CrossRef]
- Meng, F.T.; Luo, G.; Maximov, I.; Montelius, L.; Chu, J.K.; Xu, H.Q. Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate. Microelectron. Eng. 2011, 88, 3108–3112. [Google Scholar] [CrossRef]
- Adhikari, A.; Dev, K.; Asundi, A. Subwavelength metrological characterization by Mueller matrix polarimeter and finite difference time domain method. Opt. Lasers Eng. 2016, 86, 242–247. [Google Scholar] [CrossRef]
- Li, F.F.; Li, D.; Shu, S.W.; Ma, G.H.; Ge, J.; Hu, S.H.; Dai, N. Polarized terahertz wave transmission through wire gratings. J. Infrared Millim. Waves 2010, 29, 452–456. [Google Scholar]
- Chen, Y.; Wang, J.; Gao, T.; Zhu, W.L.; Wang, X.F.; Huang, F. Fabrication of large-scale free-standing terahertz wire grid polarizer by femtosecond laser micro-machining. Laser Optoelectron. Prog. 2020, 57, 111424. [Google Scholar] [CrossRef]
- Huang, Z.H.; Ma, X.Q.; Zhu, P.; Zhang, Y.N.; Cai, H.Y.; Zhang, Y.X. Design of long-wavelength infrared polarizer based on sub-wavelength aluminum-ZnSe grating. In Opto-Electronic Engineering; Peking University Core: Beijing, China, 2017; Volume 44. [Google Scholar] [CrossRef]
- Sun, G.B.; Zhang, J.; Ji, X.S.; Hu, C.; Jiang, S.L.; Liu, Y.Y. Polarization extinction ratio characteristics of visible wide-angle metal polarization beam splitting grating. Acta Photonica Sin. 2023, 52, 1205002. [Google Scholar] [CrossRef]
- Kong, Y.Y.; Luo, H.H.; Liu, D.Q. Design of a mid-infrared Al wire-grid polarizer on Si substrates. Micronanoelectron. Technol. 2018, 55, 461–467. [Google Scholar] [CrossRef]
- Liu, X.W.; Lin, Z.F.; Zhang, Z.H.; Chai, Y.W.; Wang, L.X.; Kang, G.G. A low-cost wire grid polarizer with an average extinction ratio of 40dB in SWIR range realized by oblique angled deposition. Opt. Laser Technol. 2025, 189, 113099. [Google Scholar] [CrossRef]
- Zhao, Z.; Corso, A.J.; Pelizzo, M.G. Nanowire grid reflecting polarizers for ultraviolet applications. IEEE Photonics J. 2020, 12, 4502011. [Google Scholar] [CrossRef]
- Ji, Y.Y.; Fan, F.; Cheng, J.R.; Wang, X.H.; Chang, S.J. Terahertz polarizer with high extinction ratio and high transmittance based on bilayer metal grating. Acta Electron. Sin. 2023, 51, 2733–2738. [Google Scholar] [CrossRef]
- Shin, J.H.; Moon, K.; Lee, E.S.; Park, K.H. Terahertz wave polarization control by a metal wire-grid polarizer based on VO2/Al2O3. In Proceedings of the 39th International Conference on Infrared, Millimeter, and Terahertz Waves, Tucson, AZ, USA, 14–19 September 2014. [Google Scholar] [CrossRef]
- Wang, S.N.; He, Y.L.; Zhu, H.W.; Wang, H.X. An efficient design method for a metasurface polarizer with high transmittance and extinction ratio. Photonics 2024, 11, 53. [Google Scholar] [CrossRef]
- Zhang, G.H.; Zhao, G.Z.; Zhang, S.B. Numerical simulation of terahertz transmission of bilayer metallic meshes with different thickness of substrates. Proc. SPIE 2012, 8526, 314–318. [Google Scholar] [CrossRef]
- Wang, P.Y.; Liu, H.G.; Ren, L.Y. Design of mid-wave infrared metal wire-grid polarizer with sub-wavelength single-layer antireflection film. J. Appl. Opt. 2025, 46, 183–193. [Google Scholar] [CrossRef]
- Siefke, T.; Andreas, S.; Pfeiffer, K.; Puffky, O. Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range. Adv. Opt. Mater. 2016, 4, 2380–2386. [Google Scholar] [CrossRef]
- Marcos, L.R.; Bin, L.O.; Asmara, T.C.; Heussler, S.P.; Guerrero, A.; Mas, R.; Borrise, X.; Breese, M.B.H.; Rusydi, A. Design, fabrication, and characterization of wire grid polarizers for the deep UV spectral range. In Proceeding SPIE: Proceedings of the Advanced in Optical Thin Films VI, Frankfurt, Germany, 14–17 May 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10691, p. 1069124. [Google Scholar] [CrossRef]
- Zhang, H.R.; Ji, H.Y.; Zhao, P.; Lin, G.Z.; Wang, F.H.; Zhang, B.; Shen, J.L. Study on ultraviolet light-induced metal wire-grid polarizer in terahertz frequency range. Spectrosc. Spectr. Anal. 2019, 39, 2040–2045. [Google Scholar]
- Asano, K.; Yokoyama, S.; Kemmochi, A.; Yatagai, T. Fabrication and characterization of a deep ultraviolet wire grid polarizer with a chromium-oxide subwavelength grating. Appl. Opt. 2014, 53, 2942–2948. [Google Scholar] [CrossRef]
- Kong, Y.Y. Research on the Structure and Characteristic of Mid-Infrared Metallic Wire Grid Polarizer. Ph.D. Dissertation, University of Chinese Academy of Sciences, Beijing, China, 2018. [Google Scholar]
- Tang, G.G.; Tan, Q.F.; Chen, W.L.; Li, Q.Q.; Jin, W.Q.; Jin, G.F. Design and fabrication of sub-wavelength metal wire-grid and its application to experimental study of polarimetric imaging. Acta Phys. Sin. 2011, 60, 337–343. [Google Scholar]
- Wu, F.; Bu, Y.; Liu, Z.F.; Wang, S.Q.; Li, S.K.; Wang, X.C. Design and analysis of bilayer metallic grating polarizer in deep ultraviolet band. Acta Phys. Sin. 2021, 70, 044203. [Google Scholar] [CrossRef]
- Jeon, J.; Chun, B.S.; Seo, Y.; Kim, M.; Kim, H.; Kim, Y.; Kim, J.S.; Lee, S.J. Improving infra-red polarized imaging efficiency in a bilayer wire-grid polarizer. Nanoscale Adv. 2023, 5, 633–639. [Google Scholar] [CrossRef]
- Sun, P. Study on Subwavelength Metallic Polarization Gratings for Visible Polarization Imaging. Master’s Thesis, Soochow Univerisity, Suzhou, China, 2011. [Google Scholar] [CrossRef]
- Qi, J.L.; Zhou, Y.D.; Xu, Y.C.; Deng, Q.Y.; Liu, K.H.; Xu, X.Z.; Zhou, X. Broadband infrared polarizer of graphene wire grids with flat PER curves. AIP Adv. 2024, 14, 045243. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chao, Y.Y.; Liang, J.J.; Yan, B.; Wang, X.H.; Ni, K.; Zhou, Q. Large-area wire grid polarizer with high transverse magnetic wave transmittance and extinction ratio for infrared imaging system. Adv. Photonics Res. 2023, 4, 2200218. [Google Scholar] [CrossRef]
- Kim, H.; Jeon, J.; Jo, J.; Chun, B.S.; Lee, S.J.; Chang, W.S. Realizing the high efficiency of type-II superlattice infrared sensors integrated wire-grid polarizer via femtosecond laser polishing. Adv. Mater. Technol. 2024, 9, 2400374. [Google Scholar] [CrossRef]
- Chicharo, A.; Kaspar, Z.; Rappoport, T.G.; Punjal, A.; Liao, C.D.; Beule, P.D.; Borme, J.; Peres, N.M.R.; Alpuim, P. Broadband high-performance terahertz polarizers by nanoimprint lithography for advanced applications. arXiv 2021, arXiv:2102.10029. [Google Scholar] [CrossRef]
- Fu, X.H.; Lin, X.M.; Zhang, G.; Wang, Y.; Zhang, J. Development of Infrared Wide Band Polarizing Elements with Subwavelength Metal Wire Grids. Chin. J. Lasers 2021, 48, 0903002. [Google Scholar] [CrossRef]
- Yang, J.T.; Wang, J.A.; Wang, Y.; Hu, X. Fabrication technology of a subwavelength metal grating polarizer. Infrared Technol. 2021, 43, 8–12. [Google Scholar]
- Liu, S.H.; Zhao, Z.J.; Xu, F.Y.; Xu, S.C.; Gong, X.X.; Fan, M.G.; Luo, Y.F.; Qing, H.Y. Design of an Au-Pt-Ti wire-grid polarizer based on midinfrared pixelated micropolarizer arrays. Soc. Photo-Opt. Instrum. Eng. (SPIE) 2023, 62, 037104. [Google Scholar] [CrossRef]
- Kong, Y.Y.; Liu, D.Q.; Luo, H.H. Effect of magnetic polaritons on the polarization characteristics of metal-dielectric-metal infrared wire-grid polarizers. Opt. Commun. 2020, 474, 126111. [Google Scholar] [CrossRef]
Direction of wave propagation.
TE wave.
TM wave.
Direction of wave propagation.
TE wave.
TM wave.



















| Operating Wavelength Bands | Optional Substrates |
|---|---|
| Ultraviolet | Fused Silica, MgF2, LiF |
| Visible | Fused Silica |
| Mid-IR | Sapphire, Ge, ZnS, Si, CaF2 |
| Far-IR | CaF2 |
| Terahertz | Fused Silica, HR-Si, PE |
| Parameter | Al | Au | Ag | Cu | Cr | Ti |
|---|---|---|---|---|---|---|
| 1.373 | 0.181 | 0.135 | 0.239 | 3.136 | 2.153 | |
| 7.618 | 3.068 | 3.985 | 3.416 | 3.312 | 2.923 |
| Parameter | Cr2O3 | Ta2O5 | TiO2 |
|---|---|---|---|
| 2.5405 | 1.7969 | 1.4902 | |
| 1.4853 | 1.0974 | 1.1057 |
| Structure | Substrate | Period (μm) | Height (μm) | Au Thickness (μm) |
|---|---|---|---|---|
| P1 | COC | 2 | 3 | 0.1 |
| P2 | COC | 3 | 3 | 0.1 |
| P3 | Si | 2 | 2 | 0.1 |
| Wavelength (nm) | 413.1 | 457.9 | 476.5 | 488 | 501.7 | 514.5 | 532 | 632.8 |
| TE Transmittance (%) | 68.31 | 58.11 | 56.37 | 55.36 | 51.03 | 66.67 | 60.51 | 60.24 |
| TE Transmittance (%) | 12.46 | 8.04 | 6.18 | 6.16 | 5.36 | 8.78 | 7.53 | 2.23 |
| extinction ratio | 5.48 | 7.23 | 8.61 | 8.99 | 9.52 | 7.59 | 8.03 | 29.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Fu, X.; Liu, X.; Pan, Y.; Dong, S.; Wang, B.; Lin, Z.; Jiang, H. A Review of Sub-Wavelength Wire Grid Polarizers and Their Development Trends. Photonics 2025, 12, 1046. https://doi.org/10.3390/photonics12111046
Chen B, Fu X, Liu X, Pan Y, Dong S, Wang B, Lin Z, Jiang H. A Review of Sub-Wavelength Wire Grid Polarizers and Their Development Trends. Photonics. 2025; 12(11):1046. https://doi.org/10.3390/photonics12111046
Chicago/Turabian StyleChen, Bing, Xiuhua Fu, Xianzhu Liu, Yonggang Pan, Suotao Dong, Ben Wang, Zhaowen Lin, and Huilin Jiang. 2025. "A Review of Sub-Wavelength Wire Grid Polarizers and Their Development Trends" Photonics 12, no. 11: 1046. https://doi.org/10.3390/photonics12111046
APA StyleChen, B., Fu, X., Liu, X., Pan, Y., Dong, S., Wang, B., Lin, Z., & Jiang, H. (2025). A Review of Sub-Wavelength Wire Grid Polarizers and Their Development Trends. Photonics, 12(11), 1046. https://doi.org/10.3390/photonics12111046
