A Signal Detection Method Based on BiGRU for FSO Communications with Atmospheric Turbulence
Abstract
1. Introduction
2. FSO System Model
3. BiGRU-Based Signal Detection
- Forward GRU:
- Backward GRU:
4. Simulations and Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghassemlooy, Z.; Arnon, S.; Uysal, M.; Xu, Z.; Cheng, J. Emerging optical wireless communications-advances and challenges. IEEE J. Sel. Areas Commun. 2015, 33, 1738–1749. [Google Scholar] [CrossRef]
- Chaleshtory, Z.N.; Gholami, A.; Ghassemlooy, Z.; Sedghi, M. Experimental investigation of environment effects on the FSO link with turbulence. IEEE Photonics Technol. Lett. 2017, 29, 1435–1438. [Google Scholar] [CrossRef]
- Basudewa, M.; Bagaskara, Z.; Damita, S.; Putra, R.; Ahmadi, D. Bit error rate performance analysis for free space optic communication. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: London, UK, 2020; Volume 850, p. 012056. [Google Scholar]
- Alnajjar, S.H.; Noori, A.A.; Moosa, A.A. Enhancement of FSO communications links under complex environment. Photonic Sens. 2017, 7, 113–122. [Google Scholar] [CrossRef]
- Akbari, M.; Olyaee, S. BER performance analysis in SISO and MIMO-FSO channels with pointing error and different models. Int. J. Electron. 2025, 1–21. [Google Scholar] [CrossRef]
- Navidpour, S.M.; Uysal, M.; Kavehrad, M. BER performance of free-space optical transmission with spatial diversity. IEEE Trans. Wirel. Commun. 2007, 6, 2813–2819. [Google Scholar] [CrossRef]
- Tsiftsis, T.A.; Sandalidis, H.G.; Karagiannidis, G.K.; Uysal, M. Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Trans. Wirel. Commun. 2009, 8, 951–957. [Google Scholar] [CrossRef]
- Tsiftsis, T.A.; Sandalidis, H.G.; Karagiannidis, G.K.; Uysal, M. FSO links with spatial diversity over strong atmospheric turbulence channels. In Proceedings of the 2008 IEEE International Conference on Communications, Beijing, China, 19–23 May 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 5379–5384. [Google Scholar]
- Abaza, M.; Mesleh, R.; Mansour, A.; Aggoune, E.H.M. Spatial diversity for FSO communication systems over atmospheric turbulence channels. In Proceedings of the 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 6–9 April 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 382–387. [Google Scholar]
- Aarthi, G.; Prabu, K.; Reddy, G.R. Aperture averaging effects on the average spectral efficiency of FSO links over turbulence channel with pointing errors. Opt. Commun. 2017, 385, 136–142. [Google Scholar] [CrossRef]
- Viswanath, A.; Jain, V.K.; Kar, S. Aperture averaging and receiver diversity for FSO downlink in presence of atmospheric turbulence and weather conditions for OOK, M-PPM and M-DPPM schemes. Opt. Quantum Electron. 2016, 48, 435. [Google Scholar] [CrossRef]
- Li, M.; Cvijetic, M. Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction. Appl. Opt. 2015, 54, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Ata, Y.; Alouini, M.S. HAPS based FSO links performance analysis and improvement with adaptive optics correction. IEEE Trans. Wirel. Commun. 2022, 22, 4916–4929. [Google Scholar] [CrossRef]
- Yang, L.; Hasna, M.O.; Gao, X. Performance of mixed RF/FSO with variable gain over generalized atmospheric turbulence channels. IEEE J. Sel. Areas Commun. 2015, 33, 1913–1924. [Google Scholar] [CrossRef]
- Liu, X.; Lin, M.; Zhu, W.P.; Wang, J.Y.; Upadhyay, P.K. Outage performance for mixed FSO-RF transmission in satellite-aerial-terrestrial networks. IEEE Photonics Technol. Lett. 2020, 32, 1349–1352. [Google Scholar] [CrossRef]
- Zheng, C.; Yu, S.; Gu, W. A SVM-based processor for free-space optical communication. In Proceedings of the 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication, Beijing, China, 14–16 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 30–33. [Google Scholar]
- Amirabadi, M.A.; Kahaei, M.H.; Nezamalhosseini, S.A. Deep learning based detection technique for FSO communication systems. Phys. Commun. 2020, 43, 101229. [Google Scholar] [CrossRef]
- Narasimha, V.; Gurugopinath, S. Detection of On-Off Keying Signals in Free Space Optics: A Supervised Learning Approach. In Proceedings of the 2021 2nd International Conference for Emerging Technology (INCET), Belagavi, India, 21–23 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Mai, V.; Kim, H. Multiple-aperture direct-detection receiver based on maximal ratio combining for FSO communication. IEEE Photonics Technol. Lett. 2022, 34, 405–408. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Sun, Z.G.; Zhang, J.K.; Zhang, Y.Y. A fast blind detection algorithm for outdoor visible light communications. IEEE Photonics J. 2015, 7, 7904808. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Number of sampling points in one symbol period, S | 10 |
Number of features in hidden state of BiGRU layers, | 10 |
Configuration of fully connected layers, | {20, 10} |
Time step, K | 250 |
Batch size | 256 |
Loss function | Crossentropy |
Optimizer | Adam |
Learning rate | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Z.; Xu, Z.; Li, J.; Wang, J.; Zhao, J.; Su, Y.; Wang, Y. A Signal Detection Method Based on BiGRU for FSO Communications with Atmospheric Turbulence. Photonics 2025, 12, 980. https://doi.org/10.3390/photonics12100980
Yi Z, Xu Z, Li J, Wang J, Zhao J, Su Y, Wang Y. A Signal Detection Method Based on BiGRU for FSO Communications with Atmospheric Turbulence. Photonics. 2025; 12(10):980. https://doi.org/10.3390/photonics12100980
Chicago/Turabian StyleYi, Zhenning, Zhiyong Xu, Jianhua Li, Jingyuan Wang, Jiyong Zhao, Yang Su, and Yimin Wang. 2025. "A Signal Detection Method Based on BiGRU for FSO Communications with Atmospheric Turbulence" Photonics 12, no. 10: 980. https://doi.org/10.3390/photonics12100980
APA StyleYi, Z., Xu, Z., Li, J., Wang, J., Zhao, J., Su, Y., & Wang, Y. (2025). A Signal Detection Method Based on BiGRU for FSO Communications with Atmospheric Turbulence. Photonics, 12(10), 980. https://doi.org/10.3390/photonics12100980