Enhanced Performance of High-Power InAs/GaAs Quantum Dot Lasers Through Indium Flushing
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Lv, Z.; Wang, S.; Chai, H.; Liu, W.; Jiang, K.; Yang, X.; Yang, T. High power lateral coupled InAs/GaAs quantum dot distributed feedback lasers grown on Si (001) substrates. Opt. Express 2024, 32, 34444–34452. [Google Scholar] [CrossRef]
- Li, X.; Jin, P.; An, Q.; Wang, Z.; Lv, X.; Wei, H.; Wu, J.; Wu, J.; Wang, Z. A high-performance quantum dot superluminescent diode with a two-section structure. Nanoscale Res. Lett. 2011, 6, 625. [Google Scholar] [CrossRef] [PubMed]
- Jayavel, P.; Kita, T.; Wada, O.; Ebe, H.; Sugawara, M.; Arakawa, Y.; Nakata, Y.; Akiyama, T. Optical Polarization Properties of InAs/GaAs Quantum Dot Semiconductor Optical Amplifier. Jpn. J. Appl. Phys. 2005, 44, 2528. [Google Scholar] [CrossRef]
- Chen, J.-J.; Wei, W.-Q.; Qin, J.-L.; Yang, B.; Huang, J.-Z.; Wang, Z.-H.; Wang, T.; Yu, C.-Y.; Zhang, J.-J. Multi-wavelength injection locked semiconductor comb laser. Photonics Res. 2022, 10, 1840–1847. [Google Scholar] [CrossRef]
- Su, X.-B.; Shao, F.-H.; Hao, H.-M.; Liu, H.-Q.; Li, S.-L.; Dai, D.-Y.; Shang, X.-J.; Wang, T.-F.; Zhang, Y.; Yang, C.-A.; et al. High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers. Chin. Phys. B 2023, 32, 98103. [Google Scholar] [CrossRef]
- Kakuda, M.; Morais, N.; Kwoen, J.; Arakawa, Y. Enhanced temperature stability of threshold current of InAs/GaAs quantum dot lasers by AlGaAs lateral potential barrier layers. Opt. Express 2023, 31, 31243–31252. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Huang, J.; Zhou, Z.; Liu, Z.; Ponnampalam, L.; Liu, Z.; Tang, M.; Lo, M.-C.; Cao, Z.; Nishi, K.; et al. Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20 °C and 120 °C. Photonics Res. 2020, 8, 1937–1942. [Google Scholar] [CrossRef]
- Pryor, C. Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations. Phys. Rev. B 1998, 57, 7190–7195. [Google Scholar] [CrossRef]
- Wang, S.; Lv, Z.-R.; Yang, Q.-L.; Wang, S.-L.; Chai, H.-Y.; Meng, L.; Lu, D.; Ji, C.; Yang, X.-G.; Yang, T. High-Power, Narrow-Linewidth, and Low-Noise Quantum Dot Distributed Feedback Lasers. Laser Photonics Rev. 2023, 17, 2200979. [Google Scholar] [CrossRef]
- Du, A.-T.; Chao, C.-F.; Han, S.-X.; Wang, H.-L.; Gong, Q. Effect of Be doping in active regions on the performance of 1.3 μm InAs quantum dot laser. J. Infrared Millim. Waves 2023, 42, 450–456. [Google Scholar]
- Liang, S.; Zhu, H.-L.; Pan, J.-Q.; Zhao, L.-J.; Wang, L.-F.; Zhou, F.; Shu, H.-Y.; Bian, J.; An, X.; Wang, W. Photoluminescence and lasing properties of InAs/GaAs quantum dots grown by metal-organic chemical vapour deposition. Chin. Phys. B 2008, 17, 4300–4304. [Google Scholar] [CrossRef]
- Sasakura, H.; Kayamori, S.; Adachi, S.; Muto, S. Effect of indium-flush method on the control of photoluminescence energy of highly uniform self-assembled InAs quantum dots by slow molecular beam epitaxy growth. J. Appl. Phys. 2007, 102, 013515. [Google Scholar] [CrossRef]
- Kumagai, N.; Ohkouchi, S.; Shirane, M.; Igarashi, Y.; Nomura, M.; Ota, Y.; Yorozu, S.; Iwamoto, S.; Arakawa, Y. Effects of growth temperature of partial GaAs cap on InAs quantum dots in In-flush process for single dot spectroscopy. Phys. Status Solidi C 2011, 8, 248–250. [Google Scholar] [CrossRef]
- Keizer, J.G.; Bozkurt, M.; Bocquel, J.; Koenraad, P.M.; Mano, T.; Noda, T.; Sakoda, K.; Clark, E.C.; Bichler, M.; Abstreiter, G.; et al. Shape Control of QDs Studied by Cross-sectional Scanning Tunneling Microscopy. J. Korean Phys. Soc. 2011, 58, 6. [Google Scholar] [CrossRef]
- Wasilewski, Z.R.; Fafard, S.; McCaffrey, J.P. Size and shape engineering of vertically stacked self-assembled quantum dots. J. Cryst. Growth 1999, 201, 1131–1135. [Google Scholar] [CrossRef]
- Haffouz, S.; Raymond, S.; Lu, Z.G.; Barrios, P.J.; Roy-Guay, D.; Wu, X.; Liu, J.R.; Poitras, D.; Wasilewski, Z.R. Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: A new approach in controlling the bandwidth. J. Cryst. Growth 2009, 311, 1803–1806. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, X.; Yang, Z.; Zhong, H.; Song, C.; Liu, L.; Yu, Y.; Yu, S. High Quality InAs/GaAs Self-Assembled Quantum Dots Grown by Molecular Beam Epitaxy and their Application on Novel Optoelectronic Devices. Chin. J. Vac. Sci. Technol. 2023, 43, 210–218. [Google Scholar] [CrossRef]
- Huang, X.; Su, R.; Yang, J.; Rao, M.; Liu, J.; Yu, Y.; Yu, S. Wafer-Scale Epitaxial Low Density InAs/GaAs Quantum Dot for Single Photon Emitter in Three-Inch Substrate. Nanomaterials 2021, 11, 930. [Google Scholar] [CrossRef]
- Molas, M.; Kuldová, K.; Borysiuk, J.; Wasilewski, Z.; Babiński, A. Quantum Confinement in InAs/GaAs Systems with Self-Assembled Quantum Dots Grown Using In-Flush Technique. Acta Phys. Pol. A 2011, 119, 624–626. [Google Scholar] [CrossRef]
- Zribi, J.; Ilahi, B.; Paquette, B.; Jaouad, A.; Thériault, O.; Hinzer, K.; Cheriton, R.; Patriarche, G.; Fafard, S.; Aimez, V.; et al. Effect of Dot-Height Truncation on the Device Performance of Multilayer InAs/GaAs Quantum Dot Solar Cells. IEEE J. Photovolt. 2016, 6, 584–589. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Zhang, Z.; Chen, H.; Huang, Y.; Hou, C.; Wang, J.; Zhang, R.; Ning, J.; Min, J.; et al. Development of Modulation p-Doped 1310 nm InAs/GaAs Quantum Dot Laser Materials and Ultrashort Cavity Fabry–Perot and Distributed-Feedback Laser Diodes. ACS Photonics 2018, 5, 1084–1093. [Google Scholar] [CrossRef]
- Shchekin, O.B.; Park, G.; Huffaker, D.L.; Mo, Q.; Deppe, D.G. Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity. IEEE Photonics Technol. Lett. 2000, 12, 1120–1122. [Google Scholar] [CrossRef]
- Shchekin, O.B.; Deppe, D.G. 1.3 μm InAs quantum dot laser with T0 = 161 K from 0 to 80 °C. Appl. Phys. Lett. 2002, 80, 3277–3279. [Google Scholar] [CrossRef]
- Butt, N.J.; Roberts, R.A.; Patnaik, S.S. Laser diode optical output dependence on junction temperature for high-power laser systems. Opt. Laser Technol. 2020, 125, 106019. [Google Scholar] [CrossRef]
- Lv, Z.-R.; Zhang, Z.-K.; Yang, X.-G.; Yang, T. Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping. Appl. Phys. Lett. 2018, 113, 011105. [Google Scholar] [CrossRef]
- Yang, Z.; Ding, Z.; Liu, L.; Zhong, H.; Cao, S.; Zhang, X.; Lin, S.; Huang, X.; Deng, H.; Yu, Y.; et al. High-performance distributed feedback quantum dot lasers with laterally coupled dielectric gratings. Photonics Res. 2022, 10, 1271–1279. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, D.; Liu, H.; Shang, X.; Tan, S.; Zhang, Q.; Yang, C.; Jiang, D.; Su, X.; Ni, H.; Niu, Z. Enhanced Performance of High-Power InAs/GaAs Quantum Dot Lasers Through Indium Flushing. Photonics 2025, 12, 62. https://doi.org/10.3390/photonics12010062
Dai D, Liu H, Shang X, Tan S, Zhang Q, Yang C, Jiang D, Su X, Ni H, Niu Z. Enhanced Performance of High-Power InAs/GaAs Quantum Dot Lasers Through Indium Flushing. Photonics. 2025; 12(1):62. https://doi.org/10.3390/photonics12010062
Chicago/Turabian StyleDai, Deyan, Hanqing Liu, Xiangjun Shang, Shizhuo Tan, Qiaozhi Zhang, Chengao Yang, Dongwei Jiang, Xiangbin Su, Haiqiao Ni, and Zhichuan Niu. 2025. "Enhanced Performance of High-Power InAs/GaAs Quantum Dot Lasers Through Indium Flushing" Photonics 12, no. 1: 62. https://doi.org/10.3390/photonics12010062
APA StyleDai, D., Liu, H., Shang, X., Tan, S., Zhang, Q., Yang, C., Jiang, D., Su, X., Ni, H., & Niu, Z. (2025). Enhanced Performance of High-Power InAs/GaAs Quantum Dot Lasers Through Indium Flushing. Photonics, 12(1), 62. https://doi.org/10.3390/photonics12010062