Tunable Ultraviolet Pulse Generation from a High-Power Self-Similar-Amplification Yb-Fiber Laser
Abstract
1. Introduction
2. Experimental Setups
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozaki, Y.; Kawata, S. (Eds.) Far- and Deep-Ultraviolet Spectroscopy; Springer: Tokyo, Japan, 2015. [Google Scholar]
- Consani, C.; Auböck, G.; Van Mourik, F.; Chergui, M. Ultrafast Tryptophan-to-Heme Electron Transfer in Myoglobins Revealed by UV 2D Spectroscopy. Science 2013, 339, 1586–1589. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.T.; Baskin, J.S.; Liao, B.; Zewail, A.H. High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics. Nat. Photon. 2017, 11, 425–430. [Google Scholar] [CrossRef]
- Cingöz, A.; Yost, D.C.; Allison, T.K.; Ruehl, A.; Fermann, M.E.; Hartl, I.; Ye, J. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 2012, 482, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Chipperfield, M.P.; Dhomse, S.S.; Feng, W.; McKenzie, R.L.; Velders, G.J.M.; Pyle, J.A. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat. Commun. 2015, 6, 7233. [Google Scholar] [CrossRef]
- Khan, S.; Newport, D.; Le Calvé, S. Gas Detection Using Portable Deep-UV Absorption Spectrophotometry: A Review. Sensors 2019, 19, 5210. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Wang, H.S.; Somesfalean, G.; Wang, Z.Y.; Lou, X.T.; Wu, S.H.; Zhang, Z.G.; Qin, Y.K. Broadband UV spectroscopy system used for monitoring of SO2 and NO emissions from thermal power plants. Atmos. Environ. 2010, 44, 4266–4271. [Google Scholar] [CrossRef]
- Hachisu, H.; Miyagishi, K.; Porsev, S.G.; Derevianko, A.; Ovsiannikov, V.D.; Pal’chikov, V.G.; Takamoto, M.; Katori, H. Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks. Phys. Rev. Lett. 2008, 100, 053001. [Google Scholar] [CrossRef]
- Kaneda, Y.; Yarborough, J.M.; Merzlyak, Y.; Yamaguchi, A.; Hayashida, K.; Ohmae, N.; Katori, H. Continuous-wave, single-frequency 229 nm laser source for laser cooling of cadmium atoms. Opt. Lett. 2016, 41, 705–708. [Google Scholar] [CrossRef]
- Xu, H.; Lu, H.; Li, Z.; Zhao, J. Deep-ultraviolet femtosecond laser source at 243 nm for hydrogen spectroscopy. Opt. Express 2021, 29, 17398–17404. [Google Scholar] [CrossRef]
- Altmann, R.K.; Galtier, S.; Dreissen, L.S.; Eikema, K.S.E. High-Precision Ramsey-Comb Spectroscopy at Deep Ultraviolet Wavelengths. Phys. Rev. Lett. 2016, 117, 173201. [Google Scholar] [CrossRef]
- Thyagarajan, K.; Santschi, C.; Langlet, P.; Martin, O.J.F. Highly Improved Fabrication of Ag and Al Nanostructures for UV and Nonlinear Plasmonics. Adv. Opt. Mater. 2016, 4, 871–876. [Google Scholar] [CrossRef]
- Marques, C.A.F.; Antunes, P.; Mergo, P.; Webb, D.J.; André, P. Chirped Bragg Gratings in PMMA Step-Index Polymer Optical Fiber. IEEE Photonics Technol. Lett. 2017, 29, 500–503. [Google Scholar] [CrossRef]
- Larciprete, R.; Stuke, M. Direct observation of excimer-laser photoablation products from polymers by picosecond-uv-laser mass spectroscopy. Appl. Phys. B 1987, 42, 181–184. [Google Scholar] [CrossRef]
- Barmina, E.V.; Barberoglu, M.; Zorba, V.; Simakin, A.V. Surface nanotexturing of tantalum by laser ablation in water. Quantum Electron. 2009, 39, 89. [Google Scholar] [CrossRef]
- Nabekawa, Y.; Yoshitomi, D.; Sekikawa, T.; Watanabe, S. High-average-power femtosecond KrF excimer laser. IEEE J. Sel. Top. Quantum Electron. 2001, 7, 551–558. [Google Scholar] [CrossRef]
- Tzankov, P.; Fiebig, T.; Buchvarov, I. Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification. Appl. Phys. Lett. 2003, 82, 517–519. [Google Scholar] [CrossRef]
- Ghotbi, M.; Esteban-Martin, A.; Ebrahim-Zadeh, M. Tunable, high-repetition-rate, femtosecond pulse generation in the ultraviolet. Opt. Lett. 2008, 33, 345–347. [Google Scholar] [CrossRef]
- Gu, C.; Hu, M.; Fan, J.; Song, Y.; Liu, B.; Chai, L.; Wang, C.; Reid, D.T. High power tunable femtosecond ultraviolet laser source based on an Yb-fiber-laser pumped optical parametric oscillator. Opt. Express 2015, 23, 6181–6186. [Google Scholar] [CrossRef]
- Chaitanya, N.A.; Aadhi, A.; Jabir, M.V.; Samanta, G.K. High-power, high-repetition-rate, Yb-fiber laser based femtosecond source at 355 nm. Opt. Lett. 2015, 40, 4269–4272. [Google Scholar] [CrossRef]
- Zhai, S.Y.; Wang, X.L.; Wei, Y.; Chen, W.D.; Zhuang, F.J.; Xu, S.; Li, B.X.; Fu, J.J.; Chen, Z.Q.; Wang, H.W.; et al. A compact efficient deep ultraviolet laser at 266 nm. Laser Phys. Lett. 2013, 10, 045402. [Google Scholar] [CrossRef]
- Wang, G.; Geng, A.; Bo, Y.; Li, H.; Sun, Z.; Bi, Y.; Cui, D.; Xu, Z.; Yuan, X.; Wang, X.; et al. 28.4W 266nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser. Opt. Commun. 2006, 259, 820–822. [Google Scholar] [CrossRef]
- Willenberg, B.; Brunner, F.; Phillips, C.R.; Keller, U. High-power picosecond deep-UV source via group velocity matched frequency conversion. Optica 2020, 7, 485–491. [Google Scholar] [CrossRef]
- Reiter, F.; Graf, U.; Schultze, M.; Schweinberger, W.; Schröder, H.; Karpowicz, N.; Azzeer, A.M.; Kienberger, R.; Krausz, F.; Goulielmakis, E. Generation of sub-3 fs pulses in the deep ultraviolet. Opt. Lett. 2010, 35, 2248–2250. [Google Scholar] [CrossRef] [PubMed]
- Kosma, K.; Trushin, S.A.; Schmid, W.E.; Fuß, W. Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a Ti:sapphire laser. Opt. Lett. 2008, 33, 723–725. [Google Scholar] [CrossRef]
- Kida, Y.; Liu, J.; Teramoto, T.; Kobayashi, T. Sub-10 fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing. Opt. Lett. 2010, 35, 1807–1809. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Jiang, A.; Wu, B.; You, G.; Li, R.; Lin, S. New nonlinear-optical crystal: LiB_3O_5. J. Opt. Soc. Am. B 1989, 6, 616–621. [Google Scholar] [CrossRef]
- Nikogosyan, D.N. Beta barium borate (BBO): A review of its properties and applications. Appl. Phys. A 1991, 52, 359–368. [Google Scholar] [CrossRef]
- Kienle, F.; Teh, P.S.; Lin, D.; Alam, S.; Price, J.H.V.; Hanna, D.C.; Richardson, D.J.; Shepherd, D.P. High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator. Opt. Express 2012, 20, 7008–7014. [Google Scholar] [CrossRef]
- Poberaj, G.; Degl’Innocenti, R.; Medrano, C.; Günter, P. UV integrated optics devices based on beta-barium borate. Opt. Mater. 2009, 31, 1049–1053. [Google Scholar] [CrossRef]
- Köttig, F.; Tani, F.; Biersach, C.M.; Travers, J.C.; Russell, P.S.J. Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates. Optica 2017, 4, 1272–1276. [Google Scholar] [CrossRef]
- Zhou, X.; Yoshitomi, D.; Kobayashi, Y.; Torizuka, K. 1 W average-power 100 MHz repetition-rate 259 nm femtosecond deep ultraviolet pulse generation from ytterbium fiber amplifier. Opt. Lett. 2010, 35, 1713–1715. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Li, W.; Yan, M.; Shen, X.; Zhao, J.; Zeng, H. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers. Opt. Express 2012, 20, 12899–12905. [Google Scholar] [CrossRef] [PubMed]
- Fermann, M.E.; Kruglov, V.I.; Thomsen, B.C.; Dudley, J.M.; Harvey, J.D. Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers. Phys. Rev. Lett. 2000, 84, 6010–6013. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, W.; Wang, C.; Liu, Y.; Zeng, H. Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation. Opt. Express 2014, 22, 32214–32219. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Luo, D.; Bai, D.; Wang, C.; Zeng, H. Generation of 33 fs 935 W average power pulses from a third-order dispersion managed self-similar fiber amplifier. Opt. Express 2016, 24, 10939–10945. [Google Scholar] [CrossRef]
- Luo, D.; Liu, Y.; Gu, C.; Wang, C.; Zhu, Z.; Zhang, W.; Deng, Z.; Zhou, L.; Li, W.; Zeng, H. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification. Appl. Phys. Lett. 2018, 112, 061106. [Google Scholar] [CrossRef]
- Tamura, K.; Ippen, E.P.; Haus, H.A.; Nelson, L.E. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 1993, 18, 1080–1082. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, Z.; He, C.; Shi, Y.; Yang, Y.; Lin, X. Collapse of pure-quartic solitons in a mode-locked fiber laser. Chaos Solitons Fractals 2024, 180, 114538. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, Z.; Qi, Y.; Jin, L.; Li, L.; Lin, X. Internal motion within pulsating pure-quartic soliton molecules in a fiber laser. Chaos Solitons Fractals 2023, 172, 113544. [Google Scholar] [CrossRef]
- Luo, D.; Li, W.; Liu, Y.; Wang, C.; Zhu, Z.; Zhang, W.; Zeng, H. High-power self-similar amplification seeded by a 1 GHz harmonically mode-locked Yb-fiber laser. Appl. Phys. Express 2016, 9, 082702. [Google Scholar] [CrossRef]
- Shah, L.; Fermann, M. High-Power Ultrashort-Pulse Fiber Amplifiers. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 552–558. [Google Scholar] [CrossRef]
- Armstrong, J.A.; Bloembergen, N.; Ducuing, J.; Pershan, P.S. Interactions between Light Waves in a Nonlinear Dielectric. Phys. Rev. 1962, 127, 1918–1939. [Google Scholar] [CrossRef]
- Baumgartner, R.; Byer, R. Optical parametric amplification. IEEE J. Quantum Electron. 1979, 15, 432–444. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Luo, D.; Xie, G.; Deng, Z.; Gu, C.; Li, W. Tunable Ultraviolet Pulse Generation from a High-Power Self-Similar-Amplification Yb-Fiber Laser. Photonics 2025, 12, 50. https://doi.org/10.3390/photonics12010050
Wang Z, Luo D, Xie G, Deng Z, Gu C, Li W. Tunable Ultraviolet Pulse Generation from a High-Power Self-Similar-Amplification Yb-Fiber Laser. Photonics. 2025; 12(1):50. https://doi.org/10.3390/photonics12010050
Chicago/Turabian StyleWang, Zefeng, Daping Luo, Gehui Xie, Zejiang Deng, Chenglin Gu, and Wenxue Li. 2025. "Tunable Ultraviolet Pulse Generation from a High-Power Self-Similar-Amplification Yb-Fiber Laser" Photonics 12, no. 1: 50. https://doi.org/10.3390/photonics12010050
APA StyleWang, Z., Luo, D., Xie, G., Deng, Z., Gu, C., & Li, W. (2025). Tunable Ultraviolet Pulse Generation from a High-Power Self-Similar-Amplification Yb-Fiber Laser. Photonics, 12(1), 50. https://doi.org/10.3390/photonics12010050