Advances in Organic Upconversion Devices
Abstract
:1. Introduction
2. Fundamentals of Organic Upconversion Devices
2.1. Device Structures and Working Principles
2.2. Optoelectronic Characterization
- Absorption and Emission Spectra: The fundamental operation of organic upconversion devices hinges on their ability to absorb infrared photons and emit visible photons. The absorption spectrum of the device’s active layer is crucial as it dictates the range of IR wavelengths that the device can detect. Typically, organic upconversion imagers cover the NIR to shortwave infrared (SWIR) wavelengths, ranging from 800 to 1600 nm. This spectral response is primarily determined by the optical properties of the organic materials used in the photodetector layer [24]. The emission spectrum, on the other hand, is influenced by the materials used in the emitter layer. High purity in the electroluminescence spectrum is often achieved using materials such as perovskites and quantum dots, which can also be applied in upconversion imagers.
- Quantum Efficiency and Upconversion Efficiency: Quantum efficiency is a vital metric for upconversion devices, encompassing both the external quantum efficiency (EQE) of the photodetector (EQE_det) and the emission layer (EQE_em). EQE_det refers to the efficiency with which absorbed NIR photons are converted into charge carriers, while EQE_em denotes the efficiency of converting these charge carriers into visible photons [25]. These efficiencies directly affect the overall performance and brightness of the upconversion device. Upconversion efficiency is a crucial parameter for evaluating the performance of upconversion devices, reflecting the effectiveness with which low-energy photons are converted into high-energy photons. Enhancing upconversion efficiency is essential for improving the practical applications of these devices. Upconversion efficiency (η) is typically defined as the ratio of the number of upconverted photons to the number of absorbed photons, expressed by the formula:
- Response Time and Bandwidth: The temporal response of upconversion devices is another critical parameter, especially for applications requiring real-time imaging. The response time is determined by the carrier transport properties within the organic layers. The response bandwidth, which represents the frequency range over which the device can operate effectively, is an important measure of the device’s speed. High-speed applications demand a broader bandwidth and faster response times [24].
- Luminescence intensity: Luminescence intensity is a critical parameter in evaluating the optical performance of upconversion devices, reflecting the brightness of emitted light under excitation. It is influenced by factors such as material properties, excitation light intensity, doping concentration, and temperature. Higher luminescence intensity can be achieved by optimizing the upconversion materials’ energy level structures and quantum efficiencies, appropriate doping levels, and selecting suitable excitation wavelengths [28,29]. Measurement techniques, including steady-state spectroscopy, time-resolved spectroscopy, and photon counting, are employed to quantify luminescence intensity. Enhancements in luminescence intensity can be realized by material optimization, nanostructure design, surface modification, and excitation source optimization, ultimately improving the practical applications of upconversion devices in fields like bioimaging and sensing.
- Detectivity: Detectivity (D*) reflects the ability of detectors to detect weak signals under a noisy background, especially for photodetectors [29,30]. Defined as
- Resolution: Resolution in upconversion devices, defined by the ability to distinguish fine details, is influenced by the morphology of the organic layers and the device architecture. Unlike traditional imagers that rely on pixel arrays, organic upconversion imagers are typically pixel-less. Thus, their resolution depends on the uniformity and smoothness of the multilayered films. Improving film morphology through advanced fabrication techniques such as thermal evaporation and solution processing can enhance resolution, potentially exceeding 1000 pixels per inch (PPI) [24].
3. Organic Infrared Photodetector
3.1. BHJ Sensitizer
3.2. PHJ Sensitizer
3.3. Organic Dyes Sensitizer
4. Organic Light-Emitting Diode
4.1. Fluorescent OLED
4.2. Phosphorescent OLED
4.3. TADF OLED
4.4. Tandem OLED
5. Applications
6. Challenges and Outlook
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armin, A.; Jansen-van Vuuren, R.D.; Kopidakis, N.; Burn, P.L.; Meredith, P. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 2015, 6, 6343. [Google Scholar] [CrossRef] [PubMed]
- Baeg, K.J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv. Mater. 2013, 25, 4267–4295. [Google Scholar] [CrossRef] [PubMed]
- Siegmund, B.; Mischok, A.; Benduhn, J.; Zeika, O.; Ullbrich, S.; Nehm, F.; Böhm, M.; Spoltore, D.; Fröb, H.; Körner, C.; et al. Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 2017, 8, 15421. [Google Scholar] [CrossRef]
- García de Arquer, F.P.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100. [Google Scholar] [CrossRef]
- Kang, D.; Jeon, E.; Kim, S.; Lee, J. Lanthanide-Doped Upconversion Nanomaterials: Recent Advances and Applications. BioChip J. 2020, 14, 124–135. [Google Scholar] [CrossRef]
- Dubey, N.; Chandra, S. Miniaturized Biosensors Based on Lanthanide-Doped Upconversion Polymeric Nanofibers. Biosensors 2024, 14, 116. [Google Scholar] [CrossRef] [PubMed]
- Wieghold, S.; Bieber, A.S.; Lackner, J.; Nienhaus, K.; Nienhaus, G.U.; Nienhaus, L. One-Step Fabrication of Perovskite-Based Upconversion Devices. ChemPhotoChem 2020, 4, 704–712. [Google Scholar] [CrossRef]
- Mehrdel, B.; Nikbakht, A.; Aziz, A.A.; Jameel, M.S.; Dheyab, M.A.; Khaniabadi, P.M. Upconversion lanthanide nanomaterials: Basics introduction, synthesis approaches, mechanism and application in photodetector and photovoltaic devices. Nanotechnology 2021, 33, 082001. [Google Scholar] [CrossRef]
- Liu, H.; Gao, M.; Poole, P.J.E.L. 1.5 µm up-conversion device. Electron. Lett. 2000, 36, 1300–1301. [Google Scholar] [CrossRef]
- Chen, J.; Ban, D.; Helander, M.G.; Lu, Z.H.; Poole, P. Near-Infrared Inorganic/Organic Optical Upconverter with an External Power Efficiency of >100%. Adv. Mater. 2010, 22, 4900–4904. [Google Scholar] [CrossRef]
- Ban, D.; Han, S.; Lu, Z.H.; Oogarah, T.; SpringThorpe, A.J.; Liu, H.C. Near-infrared to visible light optical upconversion by direct tandem integration of organic light-emitting diode and inorganic photodetector. Appl. Phys. Lett. 2007, 90, 093108. [Google Scholar] [CrossRef]
- Shang, Y.; Hao, S.; Yang, C.; Chen, G. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials. Nanomaterials 2015, 5, 1782–1809. [Google Scholar] [CrossRef] [PubMed]
- Safdar, M.; Ghazy, A.; Lastusaari, M.; Karppinen, M. Lanthanide-based inorganic–organic hybrid materials for photon-upconversion. J. Mater. Chem. C 2020, 8, 6946–6965. [Google Scholar] [CrossRef]
- Yin, H.-J.; Xiao, Z.-G.; Feng, Y.; Yao, C.-J. Recent Progress in Photonic Upconversion Materials for Organic Lanthanide Complexes. Materials 2023, 16, 5642. [Google Scholar] [CrossRef]
- Liang, G.; Wang, H.; Shi, H.; Wang, H.; Zhu, M.; Jing, A.; Li, J.; Li, G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J. Nanobiotechnol. 2020, 18, 154. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, L.; Li, H.; Jiang, H.; Wang, K.; Li, N.; Zhang, Q.; Lei, Y. Decoupling the Trade-Off Between the Photosignal and Photonoise in Upconversion Devices Through a Solution-Processed Nickel Oxide Interconnecting Layer. Adv. Opt. Mater. 2023, 12, 2302021. [Google Scholar] [CrossRef]
- Zhang, N.; Tang, H.; Shi, K.; Wang, W.; Deng, W.; Xu, B.; Wang, K.; Sun, X.W. High-performance all-solution-processed quantum dot near-infrared-to-visible upconversion devices for harvesting photogenerated electrons. Appl. Phys. Lett. 2019, 115, 221103. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, Y.; Wang, Z.; Li, J.; Zhou, Z.; Zhu, L.; Zhong, H.; Liu, F.; Jiang, X. Solution-Processed Efficient Organic Upconversion Device for Direct NIR Imaging. Adv. Opt. Mater. 2024, 12, 2400912. [Google Scholar] [CrossRef]
- Liu, P.; Guo, L.; Qi, F.; Li, W.; Li, W.; Fu, Q.; Yao, J.; Xia, M.; Liu, Z.; Wang, Y. Large dynamic range and wideband mid-infrared upconversion detection with BaGa4Se7 crystal. Optica 2022, 9, 50–55. [Google Scholar] [CrossRef]
- Fang, J.; Wang, Y.; Yan, M.; Wu, E.; Huang, K.; Zeng, H. Highly Sensitive Detection of Infrared Photons by Nondegenerate Two-Photon Absorption Under Midinfrared Pumping. Phys. Rev. Appl. 2020, 14, 064035. [Google Scholar] [CrossRef]
- Fu, Q.; Liu, P.; Li, W.; Qi, F.; Pang, Z.; Li, W.; Wang, Y.; Liu, Z. High-Resolution and Wide-Span Terahertz Frequency Measurement Using Nonlinear Up-Conversion. IEEE Trans. Instrum. Meas. 2024, 73, 1005307. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, K.; Yang, W.; Wang, Z.; Zhong, F. The triplet excited state of Bodipy: Formation, modulation and application. Chem. Soc. Rev. 2015, 44, 8904–8939. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Eedugurala, N.; Leem, D.S.; Azoulay, J.D.; Ng, T.N. Organic Upconversion Imager with Dual Electronic and Optical Readouts for Shortwave Infrared Light Detection. Adv. Funct. Mater. 2021, 31, 2100565. [Google Scholar] [CrossRef]
- Hu, X.; Xiao, G.; Li, Y.; Wu, S.-E.; Chen, Q.; Li, N.; Sui, X. Infrared-Light Visualization by Organic Upconversion Devices. ACS Appl. Electron. Mater. 2023, 5, 5378–5385. [Google Scholar] [CrossRef]
- Hany, R.; Cremona, M.; Strassel, K. Recent advances with optical upconverters made from all-organic and hybrid materials. Sci. Technol. Adv. Mater. 2019, 20, 497–510. [Google Scholar] [CrossRef]
- Wu, D.; Guo, J.; Du, J.; Xia, C.; Zeng, L.; Tian, Y.; Shi, Z.; Tian, Y.; Li, X.J.; Tsang, Y.H. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917. [Google Scholar] [CrossRef]
- Wu, D.; Guo, C.; Zeng, L.; Ren, X.; Shi, Z.; Wen, L.; Chen, Q.; Zhang, M.; Li, X.J.; Shan, C.-X.; et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl. 2023, 12, 5. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, Y.; Zhou, J.; Wang, F.; Qiu, J. Integrated strategy for high luminescence intensity of upconversion nanocrystals. ACS Photonics 2017, 4, 1930–1936. [Google Scholar] [CrossRef]
- Dibaba, S.T.; Ge, X.; Ren, W.; Sun, L. Recent progress of energy transfer and luminescence intensity boosting mechanism in Nd3+-sensitized upconversion nanoparticles. J. Rare Earths 2019, 37, 791–805. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Du, X.; Han, J.; Lin, H.; Zheng, C.; Wang, J.; Yang, G.; Tao, S. High-performance organic upconversion device with 12% photon to photon conversion efficiency at 980 nm and bio-imaging application in near-infrared region. Opt. Express 2022, 30, 16644–16654. [Google Scholar] [CrossRef]
- Lu, J.; Zheng, Y.; Chen, Z.; Xiao, L.; Gong, Q. Optical upconversion devices based on photosensitizer-doped organic light-emitting diodes. Appl. Phys. Lett. 2007, 91, 201107. [Google Scholar] [CrossRef]
- Kim, D.Y.; Song, D.W.; Chopra, N.; De Somer, P.; So, F. Organic Infrared Upconversion Device. Adv. Mater. 2010, 22, 2260–2263. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Sarasqueta, G.; So, F. SnPc:C60 bulk heterojunction organic photovoltaic cells with MoO3 interlayer. Sol. Energy Mater. Sol. Cells 2009, 93, 1452–1456. [Google Scholar] [CrossRef]
- Shih, C.-J.; Li, Y.-Z.; Li, M.-Z.; Biring, S.; Huang, B.-C.; Liu, C.-W.; Yeh, T.-H.; Luo, D.; Lee, J.-H.; Huang, Y.-H.; et al. Transparent organic upconversion device targeting high- grade infrared visual image. Nano Energy 2021, 86, 106043. [Google Scholar] [CrossRef]
- Liu, S.W.; Lee, C.C.; Yuan, C.H.; Su, W.C.; Lin, S.Y.; Chang, W.C.; Huang, B.Y.; Lin, C.F.; Lee, Y.Z.; Su, T.H. Transparent Organic Upconversion Devices for Near-Infrared Sensing. Adv. Mater. 2015, 27, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-W.; Li, Y.-Z.; Lin, S.-Y.; Li, Y.-H.; Lee, C.-C. Inducing the trap-site in an emitting-layer for an organic upconversion device exhibiting high current-gain ratio and low turn-on voltage. Org. Electron. 2016, 30, 275–280. [Google Scholar] [CrossRef]
- Melquíades, M.C.; Aderne, R.; Cuin, A.; Quirino, W.G.; Cremona, M.; Legnani, C. Investigation of Tin(II)2,3-naphtalocyanine molecule used as near-infrared sensitive layer in organic up-conversion devices. Opt. Mater. 2017, 69, 54–60. [Google Scholar] [CrossRef]
- Li, N.; Lan, Z.; Lau, Y.S.; Xie, J.; Zhao, D.; Zhu, F. SWIR Photodetection and Visualization Realized by Incorporating an Organic SWIR Sensitive Bulk Heterojunction. Adv. Sci. 2020, 7, 2000444. [Google Scholar] [CrossRef]
- El-Khouly, M.E.; Gutiérrez, A.M.; Sastre-Santos, Á.; Fernández-Lázaro, F.; Fukuzumi, S. Light harvesting zinc naphthalocyanine–perylenediimide supramolecular dyads: Long-lived charge-separated states in nonpolar media. Phys. Chem. Chem. Phys. 2012, 14, 3612. [Google Scholar] [CrossRef]
- Pham, T.A.; Song, F.; Stöhr, M. Supramolecular self-assembly of metal-free naphthalocyanine on Au(111). Phys. Chem. Chem. Phys. 2014, 16, 8881. [Google Scholar] [CrossRef]
- Pandey, R.; Kerner, R.A.; Menke, S.M.; Holst, J.; Josyula, K.V.B.; Holmes, R.J. Tin naphthalocyanine complexes for infrared absorption in organic photovoltaic cells. Org. Electron. 2013, 14, 804–808. [Google Scholar] [CrossRef]
- Karuthedath, S.; Firdaus, Y.; Liang, R.Z.; Gorenflot, J.; Beaujuge, P.M.; Anthopoulos, T.D.; Laquai, F. Impact of fullerene on the photophysics of ternary small molecule organic solar cells. Adv. Energy Mater. 2019, 9, 1901443. [Google Scholar] [CrossRef]
- Li, N.; Lim, J.; Azoulay, J.D.; Ng, T.N. Tuning the charge blocking layer to enhance photomultiplication in organic shortwave infrared photodetectors. J. Mater. Chem. C 2020, 8, 15142–15149. [Google Scholar] [CrossRef]
- Li, N.; Li, T.; Li, L.S.; Li, J. Efficient and Stable OLEDs with Inverted Device Structure Utilizing Solution-Processed ZnO-Based Electron Injection Layer. Adv. Opt. Mater. 2023, 11, 2300467. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Su, Z.; Fang, F.; Zhang, G.; Wang, J.; Chu, B.; Fang, X.; Wei, Z.; Li, B.; et al. Efficient organic near-infrared photodetectors based on lead phthalocyanine/C60 heterojunction. Org. Electron. 2014, 15, 2367–2371. [Google Scholar] [CrossRef]
- Lv, W.; Zhong, J.; Peng, Y.; Li, Y.; Luo, X.; Sun, L.; Zhao, F.; Zhang, J.; Xia, H.; Tang, Y.; et al. Organic near-infrared upconversion devices: Design principles and operation mechanisms. Org. Electron. 2016, 31, 258–265. [Google Scholar] [CrossRef]
- Su, Z.; Hou, F.; Wang, X.; Gao, Y.; Jin, F.; Zhang, G.; Li, Y.; Zhang, L.; Chu, B.; Li, W. High-Performance Organic Small-Molecule Panchromatic Photodetectors. ACS Appl. Mater. Interfaces 2015, 7, 2529–2534. [Google Scholar] [CrossRef] [PubMed]
- Strassel, K.; Kaiser, A.; Jenatsch, S.; Véron, A.C.; Anantharaman, S.B.; Hack, E.; Diethelm, M.; Nüesch, F.; Aderne, R.; Legnani, C.; et al. Squaraine Dye for a Visibly Transparent All-Organic Optical Upconversion Device with Sensitivity at 1000 nm. ACS Appl. Mater. Interfaces 2018, 10, 11063–11069. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Sasabe, H.; Igarashi, T.; Hong, Z.; Kido, J. Squaraine dyes for organic photovoltaic cells. J. Mater. Chem. A 2015, 3, 14517–14534. [Google Scholar] [CrossRef]
- Strassel, K.; Ramanandan, S.P.; Abdolhosseinzadeh, S.; Diethelm, M.; Nüesch, F.; Hany, R. Solution-Processed Organic Optical Upconversion Device. ACS Appl. Mater. Interfaces 2019, 11, 23428–23435. [Google Scholar] [CrossRef]
- Hu, W.H.; Nüesch, F.; Giavazzi, D.; Jafarpour, M.; Hany, R.; Bauer, M. Squaraine Dyes for Single-Component Shortwave Infrared-Sensitive Photodiodes and Upconversion Photodetectors. Adv. Opt. Mater. 2023, 12, 2302105. [Google Scholar] [CrossRef]
- Ni, J.; Tano, T.; Ichino, Y.; Hanada, T.; Kamata, T.; Takada, N.; Yase, K. Organic Light-Emitting Diode with TiOPc Layer–A New Multifunctional Optoelectronic Device. Jpn. J. Appl. Phys. 2001, 40, L948. [Google Scholar] [CrossRef]
- Chikamatsu, M.; Ichino, Y.; Takada, N.; Yoshida, M.; Kamata, T.; Yase, K. Light up-conversion from near-infrared to blue using a photoresponsive organic light-emitting device. Appl. Phys. Lett. 2002, 81, 769–771. [Google Scholar] [CrossRef]
- Lv, W.; Zheng, H.; Li, X.; Lu, F.; Xu, S.; Sun, L.; Peng, Y. Enhancing Upconversion Efficiency of Organic Near Infrared Upconversion Devices Based on Inverted Phosphorescent OLEDs as Emitters by Introducing Connecting Layer. IEEE Trans. Electron Devices 2024, 71, 2165–2170. [Google Scholar] [CrossRef]
- Lv, W.; Zhou, J.; Zhou, Z.; Li, X.; Dai, Q.; Xu, S.; Zhong, J.; Liang, Y.; Sun, L.; Lu, F.; et al. An investigation of design principles toward near infrared organic upconversion devices. Opt. Mater. 2021, 121, 111487. [Google Scholar] [CrossRef]
- Zhou, X.; Pfeiffer, M.; Huang, J.S.; Blochwitz-Nimoth, J.; Qin, D.S.; Werner, A.; Drechsel, J.; Maennig, B.; Leo, K. Low-voltage inverted transparent vacuum deposited organic light-emitting diodes using electrical doping. Appl. Phys. Lett. 2002, 81, 922–924. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, H.J.; Hwang, J.H.; Kim, K.N.; Shim, Y.S.; Jung, S.-G.; Park, C.H.; Park, Y.W.; Ju, B.-K. High-Performance Hybrid Buffer Layer Using 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile/Molybdenum Oxide in Inverted Top-Emitting Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2015, 7, 6047–6053. [Google Scholar] [CrossRef]
- Lee, H.; Kang, C.-M.; Park, M.; Kwak, J.; Lee, C. Improved efficiency of inverted organic light-emitting diodes using tin dioxide nanoparticles as an electron injection layer. ACS Appl. Mater. Interfaces 2013, 5, 1977–1981. [Google Scholar] [CrossRef]
- Knauer, K.A.; Najafabadi, E.; Haske, W.; Gaj, M.P.; Davis, K.C.; Fuentes-Hernandez, C.; Carrasco, U.; Kippelen, B. Stacked inverted top-emitting green electrophosphorescent organic light-emitting diodes on glass and flexible glass substrates. Org. Electron. 2013, 14, 2418–2423. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Z.; Peng, Y.; Lv, W.; Ding, R.; Xu, S.; Sun, L. Enhanced performance of near infrared and broad spectral response organic photodiodes exploiting NPB as electron blocking layer. Infrared Phys. Technol. 2019, 102, 103001. [Google Scholar] [CrossRef]
- Adachi, C.; Baldo, M.A.; Thompson, M.E.; Forrest, S.R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 2001, 90, 5048–5051. [Google Scholar] [CrossRef]
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Thermally Activated Delayed Fluorescence Materials towards the Breakthrough of Organoelectronics. Adv. Mater. 2014, 26, 7931–7958. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, H.; Aizawa, N.; Hidaka, Y.; Yasuda, T. Tunable Full-Color Electroluminescence from All-Organic Optical Upconversion Devices by Near-Infrared Sensing. ACS Photonics 2017, 4, 223–227. [Google Scholar] [CrossRef]
- Song, Q.; Lin, T.; Su, Z.; Chu, B.; Yang, H.; Li, W.; Lee, C.-S. Organic Upconversion Display with an over 100% Photon-to-photon Upconversion Efficiency and a Simple Pixelless Device Structure. J. Phys. Chem. Lett. 2018, 9, 6818–6824. [Google Scholar] [CrossRef]
- He, S.-J.; Wang, D.-K.; Yang, Z.-X.; Man, J.-X.; Lu, Z.-H. Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging. Appl. Phys. Lett. 2018, 112, 243301. [Google Scholar] [CrossRef]
- He, S.J.; Wang, D.K.; Jiang, N.; Tse, J.S.; Lu, Z.H. Tunable Excitonic Processes at Organic Heterojunctions. Adv. Mater. 2015, 28, 649–654. [Google Scholar] [CrossRef]
- Yuan, C.-H.; Lee, C.-C.; Liu, C.-F.; Lin, Y.-H.; Su, W.-C.; Lin, S.-Y.; Chen, K.-T.; Li, Y.-D.; Chang, W.-C.; Li, Y.-Z.; et al. Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping. Sci. Rep. 2016, 6, 32324. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, X.; Ma, D.; Vadim, A.; Ahamad, T.; Alshehri, S.M. Near infrared to visible light organic up-conversion devices with photon-to-photon conversion efficiency approaching 30%. Mater. Horiz. 2018, 5, 874–882. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, X.; Wang, Y.; Vadim, A.; Alshehri, S.M.; Ahamad, T.; Ma, D. Deep ultraviolet-to-NIR broad spectral response organic photodetectors with large gain. J. Mater. Chem. C 2016, 4, 2160–2164. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, D.; Ma, D. Extremely Low Dark Current, High Responsivity, All-Polymer Photodetectors with Spectral Response from 300 nm to 1000 nm. Adv. Opt. Mater. 2015, 3, 1570–1576. [Google Scholar] [CrossRef]
- Sun, H.; Guo, Q.; Yang, D.; Chen, Y.; Chen, J.; Ma, D. Corrections to High Efficiency Tandem Organic Light Emitting Diode Using Organic Heterojunction as Charge Generation Layer: An Investigation into Charge Generation Model and Device Performance. ACS Photonics 2015, 2, 668. [Google Scholar] [CrossRef]
- Sun, H.; Chen, Y.; Zhu, L.; Guo, Q.; Yang, D.; Chen, J.; Ma, D. Realization of Optimal Interconnector for Tandem Organic Light-Emitting Diodes with Record Efficiency. Adv. Electron. Mater. 2015, 1, 1500176. [Google Scholar] [CrossRef]
- He, Z.; Du, X.; Zheng, C.; Yu, X.; Lin, H.; Tao, S. High-Quality Artery Monitoring and Pathology Imaging Achieved by High-Performance Synchronous Electrical and Optical Output of Near-Infrared Organic Photodetector. Adv. Sci. 2022, 10, 2203870. [Google Scholar] [CrossRef]
- Mu, G.; Rao, T.; Qi, Y.; Ma, S.; Hao, Q.; Chen, M.; Tang, X. Color-Tunable Organic Light-Emitting Displays for Interactive Multi-Signal Visualization. Adv. Funct. Mater. 2023, 33, 2301280. [Google Scholar] [CrossRef]
- Shih, C.J.; Lin, C.Y.; Chen, K.; Amin, N.R.A.; Luo, D.; Hsu, I.S.; Akbar, A.K.; Biring, S.; Lu, C.H.; Chen, B.H.; et al. Semi-Transparent, Pixel-Free Upconversion Goggles with Dual Audio-Visual Communication. Adv. Sci. 2023, 10, 232631. [Google Scholar] [CrossRef]
- Shih, C.-J.; Huang, Y.-C.; Wang, T.-Y.; Yu, C.-W.; Hsu, I.-S.; Akbar, A.K.; Lin, J.-Y.; Biring, S.; Lee, J.-H.; Liu, S.-W. Transparent organic upconversion devices displaying high-resolution, single-pixel, low-power infrared images perceived by human vision. Sci. Adv. 2023, 9, eadd7526. [Google Scholar] [CrossRef]
- Hu, W.H.; Vael, C.; Diethelm, M.; Strassel, K.; Anantharaman, S.B.; Aribia, A.; Cremona, M.; Jenatsch, S.; Nüesch, F.; Hany, R. On the Response Speed of Narrowband Organic Optical Upconversion Devices. Adv. Opt. Mater. 2022, 10, 2200695. [Google Scholar] [CrossRef]
- Huang, Z.; Miyashita, T.; Tang, M.L. Photon Upconversion at Organic-Inorganic Interfaces. Annu. Rev. Phys. Chem. 2024, 75, 329–346. [Google Scholar] [CrossRef]
- Ren, P.; Zheng, X.; Zhang, J.; De Camillis, S.; Jia, J.; Wang, H.; Liao, X.; Piper, J.A.; Lu, Y. Quantifying the influence of inert shell coating on luminescence brightness of lanthanide upconversion nanoparticles. ACS Photonics 2022, 9, 758–764. [Google Scholar] [CrossRef]
- Ma, S.; Wei, H.; Zhu, H.; Ling, F.C.-C.; Wang, X.; Su, S. Higher-Order Multiphoton Absorption Upconversion Lasing Based on ZnO/ZnMgO Multiple Quantum Wells. Nanomaterials 2022, 12, 3073. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wee, A.T. Photoluminescence upconversion of 2D materials and applications. J. Phys. Condens. Matter. 2021, 33, 223001. [Google Scholar] [CrossRef]
- Rao, T.; Chen, M.; Mu, G.; Tang, X. Infrared-to-Visible Upconversion Devices. Coatings 2022, 12, 456. [Google Scholar] [CrossRef]
- Shi, C.; Wang, D.; Li, W.; Fang, X.; Zhang, B.; Wang, D.; Hao, Y.; Fang, D.; Zhao, H.; Du, P.; et al. Atomic imaging and optical properties of InAs/In0.5Ga0.5As0.5Sb0.5 type II superlattice. Appl. Phys. Lett. 2024, 124, 251101. [Google Scholar] [CrossRef]
- Liu, M.-M.; Zheng, G.-C.; Wei, Y.; Tian, D.; Zheng, Q.-B.; Huang, L.; Xie, J. Doping induced morphology, crystal structure, and upconversion luminescence evolution: From Na3ScF6:Yb/Er/Y to NaYF4:Yb/Er/Sc nanocrystals. Rare Met. 2022, 42, 1018–1027. [Google Scholar] [CrossRef]
Year | Infrared Material | OLED Material | Active Area (cm2) | Detect Range (nm) | Emission | Maximum Brightness (cd/m2) | Conversion Efficiency | Ref. |
---|---|---|---|---|---|---|---|---|
2007 | PVK:TNFDM | Alq3 | - | 810 | Green (530 nm) | - | - | [31] |
2010 | SnPc:C60 | CBP: Ir(ppy)3 | 0.04 | ~830 | Green | 853 at 15 V | 2.7% at 15 V | [32] |
2015 | ClAlPc:C70 | CBP: Ir(ppy)3 | 0.04 or 0.16 | ~780 | Green | 1553 at 7 V | 6% at 7 V | [35] |
2016 | PbPc: C60 | Alq3 | 0.16 or 0.5 | 900 | Green | - | 0.043% at 28 V | [46] |
2017 | SnPc:C60 | Alq3 | 0.03 | ~875 | Green | 6182 at 12 V | 0.45% at 13 V | [37] |
2017 | ING-T-DPP: PC61BM | 4CzIPN:2CzPN :4CzTPN-Ph | 4 | ~810 | Full-color | - | 0.11 at 10 V | [64] |
2018 | PbPc: C60 | 2PXZ-OXD | 2 × 2 | 808~900 | Green | 32,935 at 9.5 V | 256% at 15 V | [65] |
2018 | PDPP3T-PCBM | Be(pp)2: Ir(ppy)2(acac) | 0.16 or 4 | ~850 | Green | 1504 at 12 V | 29.6% at 12 V | [69] |
2018 | SQ-880: PCBM | Alq3 | 1.6 | ~1000 | Green | 313 at 12 V | 0.27% at 12 V | [48] |
2019 | SQ-880: PCBM | SY | 0.03 or 0.07 | ~980 | Yellow | 760 at 7.5 V | 1.6% at 12 V | [18] |
2020 | DPP–DTT: IR dye | CsPbBr3 | 1.0 × 1.5 | 1000~1600 (peak:1050) | Green (516 nm) | - | 0.1% at 14 V | [38] |
2021 | SWIR-sensitive polymer: PC71BM | Alq3 | 0.1 or 2 | 800~1400 | Green | - | 0.15% at 3 V | [23] |
2023 | DCSQ1: PCBM | CzDBA | 1.0 × 1.5 | 1300 | Greenish-yellow (575 nm) | 20 at 2 V | 1.85% at 10 V | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, C.; Mu, G.; Weng, K.; Tang, X. Advances in Organic Upconversion Devices. Photonics 2024, 11, 808. https://doi.org/10.3390/photonics11090808
Fu C, Mu G, Weng K, Tang X. Advances in Organic Upconversion Devices. Photonics. 2024; 11(9):808. https://doi.org/10.3390/photonics11090808
Chicago/Turabian StyleFu, Chengchang, Ge Mu, Kangkang Weng, and Xin Tang. 2024. "Advances in Organic Upconversion Devices" Photonics 11, no. 9: 808. https://doi.org/10.3390/photonics11090808
APA StyleFu, C., Mu, G., Weng, K., & Tang, X. (2024). Advances in Organic Upconversion Devices. Photonics, 11(9), 808. https://doi.org/10.3390/photonics11090808