5.3 W/265 μJ Mid-IR All-Fiber Er3+:ZBLAN Gain-Switched Laser Based on Dielectric Fiber Mirror and Fiber-Tip Protection
Abstract
1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIR | mid-infrared |
AR | anti-reflection |
FPM | fiber pigtail mirror |
LD | laser diode |
DC | double cladding |
SNR | signal-to-noise ratio |
Appendix A
Year | Institution | Wavelength | Gain Fiber | Structure | Power/Energy | Efficiency |
---|---|---|---|---|---|---|
2001 [22] | UoM | 2.7 μm | Er3+:ZBLAN | Free space | 1.9 mJ | 13.5% |
2011 [23] | Uni. of Ljubljana | 2.8 μm | Er3+:ZBLAN | Free space | 2 W | 34% |
2017 [25] | UESTC | 2.699–2.869 μm | Er3+:ZBLAN | Free space | 473.3 mW | - |
2018 [24] | Université Laval | 2.826 μm | Er3+:ZBLAN | All fiber | 11.20 W/80 μJ | 28% |
2018 [26] | Université Laval | 3.55 μm | Er3+:ZBLAN | Free space | 180 μJ | 4.7% |
2018 [27] | UESTC | 3.46 μm | Er3+:ZBLAN | Free space | 1.04 W/10.4 μJ | 24.6% |
2018 [28] | Macquarie Uni. | 2.8–3.4 μm | Dy3+:ZBLAN | Free space | 170 mW | 21% |
2018 [31] | UESTC | 2.895–3.0 μm | Ho3+:ZBLAN | Free space | 389.3 mW/4.87 μJ | 10.8% |
2019 [29] | UESTC | 2.8–3.1 μm | Dy3+:ZBLAN | Free space | 218.6 mW/2.73 μJ | 9.4% |
2020 [30] | Université Laval | 3.24 μm | Dy3+:ZBLAN | Free space | 1.43 W/19.2 μJ | 22% |
2020 [32] | Xiamen uni. | 2.92 μm | Ho3+:ZBLAN | All fiber | 54.2 mW | 10.12% |
References
- Yumoto, M.; Saito, N.; Lin, T.; Kawamura, R.; Aoki, A.; Izumi, Y.; Wada, S. High-energy, nanosecond pulsed Cr: CdSe laser with a 2.25–3.08 μm tuning range for laser biomaterial processing. Biomed. Opt. Express 2018, 9, 5645–5653. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Lechuga, M.; Casquero, N.; Wang, A.; Grojo, D.; Siegel, J. Deep silicon smorphization induced by femtosecond laser pulses up to the mid-infrared. Adv. Opt. Mater. 2021, 9, 2100400. [Google Scholar] [CrossRef]
- Kerse, C.; Kalaycıoğlu, H.; Elahi, P.; Çetin, B.; Kesim, D.K.; Akçaalan, Ö.; Yavaş, S.; Aşık, M.D.; Öktem, B.; Hoogland, H.; et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 2016, 537, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Lucas, F.; Obata, K.; Sugioka, K. Enhanced ablation efficiency for silicon by femtosecond laser microprocessing with GHz bursts in MHz bursts (BiBurst). Int. J. Extrem. Manuf. 2022, 4, 015103. [Google Scholar] [CrossRef]
- Lambert-Girard, S.; Allard, M.; Piché, M.; Babin, F. Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements. Appl. Opt. 2015, 54, 1647–1656. [Google Scholar] [CrossRef]
- Refaat, T.F.; Singh, U.N.; Petros, M.; Remus, R.; Yu, J. Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application. Appl. Opt. 2015, 54, 7240–7251. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Luo, P. Boosting ranging performance of LiDAR using multi-pulse coherent average. IEEE Sens. J. 2019, 15, 6270–6278. [Google Scholar] [CrossRef]
- Holcomb, J.D. Versatility of erbium YAG laser: From fractional skin rejuvenation to full-field skin resurfacing. Facial Plast. Surg. Clin. 2011, 19, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Stübinger, S. Advances in bone surgery: The Er: YAG laser in oral surgery and implant dentistry. Clin. Cosmet. Inv. Dent. 2010, 2, 47–62. [Google Scholar] [CrossRef]
- Pratisto, H.; Frenz, M.; Ith, M.; Altermatt, H.J.; Jansen, E.D.; Weber, H.P. Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water. Appl. Opt. 1996, 35, 3328–3337. [Google Scholar] [CrossRef]
- Bekman, H.T.; Van Den Heuvel, J.C.; Van Putten, F.J.M.; Schleijpen, R. Development of a mid-infrared laser for study of infrared countermeasures techniques. In Proceedings of the European Symposium on Optics and Photonics for Defence and Security, London, UK, 29 December 2004; Technologies for Optical Countermeasures. pp. 27–38. [Google Scholar]
- Wang, X.; Hu, Q.; Wang, Y. Study of mid-infrared laser jamming effect on reticle-based seekers. In Proceedings of the Seventeenth National Conference on Laser Technology and Optoelectronics, Shanghai, China, 23–26 August 2022; pp. 380–383. [Google Scholar]
- Coleman, D.J.; King, T.A.; Ko, D.-K.; Lee, J. Q-switched operation of a 2.7 μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser. Opt. Commun. 2004, 236, 379–385. [Google Scholar] [CrossRef]
- Hu, T.; Hudson, D.D.; Jackson, S.D. Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser. Opt. Lett. 2012, 37, 2145–2147. [Google Scholar] [CrossRef] [PubMed]
- Tokita, S.; Murakami, M.; Shimizu, S.; Hashida, M.; Sakabe, S. 12 W Q-switched Er: ZBLAN fiber laser at 2.8 μm. Opt. Lett. 2011, 36, 2812–2814. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, T.; Jackson, S.D. Dual wavelength Q-switched cascade laser. Opt. Lett. 2012, 37, 2208–2210. [Google Scholar] [CrossRef] [PubMed]
- Woodward, R.I.; Majewski, M.R.; Macadam, N.; Hu, G.; Albrow-Owen, T.; Hasan, T. and Jackson, Stuart D. Q-switched Dy:ZBLAN fiber lasers beyond 3 μm comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus. Opt. Express 2019, 27, 15032–15045. [Google Scholar] [CrossRef] [PubMed]
- Lü, Y.; Wei, C.; Zhang, H.; Kang, Z.; Qin, G.; Liu, Y. Wideband tunable passively Q-switched fiber laser at 2.8 μm using a broadband carbon nanotube saturable absorber. Photonics Res. 2019, 7, 14–18. [Google Scholar] [CrossRef]
- Qin, Z.; Xie, G.; Zhang, H.; Zhao, C.; Yuan, P.; Wen, S.; Qian, L. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 μm. Opt. Express 2015, 23, 24713–24718. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Liu, M.; Li, Z.; Li, S.; Jia, Z.; Liu, C.; Qin, W.; Qin, G. Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber. Photonics Res. 2018, 6, 549–553. [Google Scholar] [CrossRef]
- Wei, C.; Zhu, X.; Norwood, R.A.; Peyghambarian, N. Passively Q-switched 2.8-μm nanosecond fiber laser. IEEE Photonics Technol. Lett. 2012, 24, 1741–1744. [Google Scholar] [CrossRef]
- Dickinson, B.C.; Golding, P.S.; Pollnau, M.; King, T.A.; Jackson, S.D. Investigation of a 791-nm pulsed-pumped 2.7-μm Er-doped ZBLAN fibre laser. Opt. Commun. 2001, 191, 315–321. [Google Scholar] [CrossRef]
- Gorjan, M.; Marinček, M.; Čopič, M. High-power pulsed diode-pumped Er: ZBLAN fiber laser. Opt. Lett. 2011, 36, 1923–1925. [Google Scholar] [CrossRef] [PubMed]
- Paradis, P.; Fortin, V.; Aydin, Y.O.; Vallée, R.; Bernier, M. High-power pulsed diode-pumped Er: ZBLAN fiber laser. Opt. Lett. 2018, 43, 3196–3199. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Luo, H.; Shi, H.; Lyu, Y.; Zhang, H.; Liu, Y. Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm. Opt. Express 2017, 25, 8816–8827. [Google Scholar] [CrossRef] [PubMed]
- Jobin, F.; Fortin, V.; Maes, F.; Bernier, M.; Vallée, R. Gain-switched fiber laser at 3.55 μm. Opt. Lett. 2018, 43, 1770–1773. [Google Scholar] [CrossRef]
- Luo, H.; Yang, J.; Liu, F.; Hu, Z.; Xu, Y.; Yan, F.; Peng, H.; Ouellette, F.; Li, J.; Liu, Y. Watt-level gain-switched fiber laser at 3.46 μm. Opt. Express 2018, 27, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Majewski, M.R.; Woodward, R.I.; Jackson, S.D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm. Opt. Lett. 2018, 43, 971–974. [Google Scholar] [CrossRef]
- Luo, H.; Xu, Y.; Li, J.; Liu, Y. Gain-switched dysprosium fiber laser tunable from 2.8 to 3.1 μm. Opt. Express 2019, 27, 27151–27158. [Google Scholar] [CrossRef] [PubMed]
- Jobin, F.; Paradis, P.; Fortin, V.; Magnan-Saucier, S.; Bernier, M.; Vallée, R. 1.4 W in-band pumped Dy3+-doped gain-switched fiber laser at 3.24 μm. Opt. Lett. 2020, 45, 5028–5031. [Google Scholar] [CrossRef]
- Luo, H.; Li, J.; Hai, Y.; Lai, X.; Liu, Y. State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm. Opt. Express 2018, 26, 63–79. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Li, J.; Xu, H.; Cai, Z.; Luo, Z. Mid-infrared all-fiber gain-switched pulsed laser at 3 μm. Opto-Electron. Adv. 2020, 3, 190032. [Google Scholar] [CrossRef]
- Caron, N.; Bernier, M.; Faucher, D.; Vallée, R. Understanding the fiber tip thermal runaway present in 3 μm fluoride glass fiber lasers. Opt. Express 2012, 20, 22188–22194. [Google Scholar] [CrossRef]
- Pushkin, A.V.; Migal, E.A.; Uehara, H.; Goya, K.; Tokita, S.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Skasyrsky, Y.K.; Potemkin, F.V. Compact, highly efficient, 2.1-W continuous-wave mid-infrared Fe: ZnSe coherent source, pumped by an Er: ZBLAN fiber laser. Opt. Lett. 2012, 43, 5941–5944. [Google Scholar] [CrossRef] [PubMed]
- Rayner, A.; Hirsch, M.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Distributed laser refrigeration. Appl. Opt. 2001, 40, 5423–5429. [Google Scholar] [CrossRef] [PubMed]
- Le Flohic, M.; Franchois, P.-L.; Allain, J.-Y.; Sanchez, F.; Stephan, G.M. Dynamics of the transient buildup of emission in Nd3+-doped fiber lasers. IEEE J. Quantum Electron. 1991, 27, 1910–1921. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Su, J.; Zhong, W.; Ding, Y.; Huang, L.; Bu, Y.; Li, J.; Luo, Z. 5.3 W/265 μJ Mid-IR All-Fiber Er3+:ZBLAN Gain-Switched Laser Based on Dielectric Fiber Mirror and Fiber-Tip Protection. Photonics 2024, 11, 700. https://doi.org/10.3390/photonics11080700
Chen T, Su J, Zhong W, Ding Y, Huang L, Bu Y, Li J, Luo Z. 5.3 W/265 μJ Mid-IR All-Fiber Er3+:ZBLAN Gain-Switched Laser Based on Dielectric Fiber Mirror and Fiber-Tip Protection. Photonics. 2024; 11(8):700. https://doi.org/10.3390/photonics11080700
Chicago/Turabian StyleChen, Tingting, Jue Su, Wenbo Zhong, Yu Ding, Lu Huang, Yikun Bu, Jianfeng Li, and Zhengqian Luo. 2024. "5.3 W/265 μJ Mid-IR All-Fiber Er3+:ZBLAN Gain-Switched Laser Based on Dielectric Fiber Mirror and Fiber-Tip Protection" Photonics 11, no. 8: 700. https://doi.org/10.3390/photonics11080700
APA StyleChen, T., Su, J., Zhong, W., Ding, Y., Huang, L., Bu, Y., Li, J., & Luo, Z. (2024). 5.3 W/265 μJ Mid-IR All-Fiber Er3+:ZBLAN Gain-Switched Laser Based on Dielectric Fiber Mirror and Fiber-Tip Protection. Photonics, 11(8), 700. https://doi.org/10.3390/photonics11080700