Bismuth-Doped Fiber Lasers and Amplifiers Operating from O- to U-Band: Current State of the Art and Outlook
Abstract
:1. Introduction
- Bismuth-doped fibers: toward higher Bi doping level and broadband amplification;
- Pulsed and CW lasers with different configurations based on bismuth-doped fibers: progress and future prospects;
- Fiber optic amplifiers for O-, E-, S-, and U-bands: from experiments to commercial devices.
2. Bi-Doped Fibers
3. CW and Pulsed Bismuth-Doped Fiber Lasers
3.1. Multiple Wavelengths BDFLs
3.2. Cladding-Pumped BDFLs
3.3. Pulsed BDFLs
Wavelength, nm | Mode Locking and Q-Switching Method | Pulse Duration, ns | Pulse Energy, nJ | Pump Power, mW | Active Medium | Ref. |
---|---|---|---|---|---|---|
1310 | NALM | 48 | 30 | 1040 | Bi:PSF * | [38] |
1335 | NALM | 14 | 197.7 | 305 | Bi:PSF | [39] |
1450 | NALM | 13.6 | 172 | 155 | Bi:GSF * | [41] |
1314 | Nb2C | 17.5 × 103 | 53.7 | 1040 | Bi:PSF | [42] |
1314 | WTe2 | 8 × 103 | 13.94 | 812 | Bi:PSF | [43] |
1330 | AOM | 80 | 11,500 | 1600 | Bi:PSF | [44] |
4. Bi-Doped Fiber Amplifiers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dianov, E.M. Bismuth-doped optical fibers: A challenging active medium for near-IR lasers and optical amplifiers. Light Sci. Appl. 2012, 1, e12. [Google Scholar] [CrossRef]
- Bufetov, I.A.; Melkumov, M.A.; Firstov, S.V.; Riumkin, K.E.; Shubin, A.V.; Khopin, V.F.; Guryanov, A.N.; Dianov, E.M. Bi-doped optical fibers and fiber lasers. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 111–125. [Google Scholar] [CrossRef]
- Thipparapu, N.K.; Wang, Y.; Wang, S.; Umnikov, A.A.; Barua, P.; Sahu, J.K. Bi-doped fiber amplifiers and lasers [Invited]. Opt. Mater. Express 2019, 9, 2446–2465. [Google Scholar] [CrossRef]
- Sun, H.T.; Zhou, J.; Qiu, J. Recent advances in bismuth activated photonic materials. Prog. Mater. Sci. 2014, 64, 1–72. [Google Scholar] [CrossRef]
- Firstov, S.; Khopin, V.; Bufetov, I.; Firstova, E.; Guryanov, A.; Dianov, E. Combined excitation-emission spectroscopy of bismuth active centers in optical fibers. Opt. Express 2011, 19, 19551–19561. [Google Scholar] [CrossRef]
- Firstova, E.G.; Bufetov, I.; Khopin, V.F.; Vel’miskin, V.V.; Firstov, S.V.; Bufetova, G.A.; Nishchev, K.N.; Gur’yanov, A.N.; Dianov, E.M. Luminescence properties of IR-emitting bismuth centres in silica-based glasses in the UV to near-IR spectral region. Quantum Electron. 2015, 45, 59. [Google Scholar] [CrossRef]
- Razdobreev, I.; Hamzaoui, H.E.; Ivanov, V.Y.; Kustov, E.F.; Capoen, B.; Bouazaoui, M. Optical spectroscopy of bismuth-doped pure silica fiber preform. Opt. Lett. 2010, 35, 1341–1343. [Google Scholar] [CrossRef]
- Khegai, A.; Afanasiev, F.; Ososkov, Y.; Riumkin, K.; Khopin, V.; Lobanov, A.; Yashkov, M.; Firstova, E.; Abramov, A.; Melkumov, M.; et al. The Influence of the MCVD Process Parameters on the Optical Properties of Bismuth-Doped Phosphosilicate Fibers. J. Light. Technol. 2020, 38, 6114–6120. [Google Scholar] [CrossRef]
- Hoshida, T.; Curri, V.; Galdino, L.; Neilson, D.T.; Forysiak, W.; Fischer, J.K.; Kato, T.; Poggiolini, P. Ultrawideband Systems and Networks: Beyond C + L-Band. Proc. IEEE 2022, 110, 1725–1741. [Google Scholar] [CrossRef]
- Rapp, L.; Eiselt, M. Optical amplifiers for multi–band optical transmission systems. J. Light. Technol. 2021, 40, 1579–1589. [Google Scholar] [CrossRef]
- Seiler, P.M.; Georgieva, G.; Winzer, G.; Peczek, A.; Voigt, K.; Lischke, S.; Fatemi, A.; Zimmermann, L. Toward coherent O-band data center interconnects. Front. Optoelectron. 2021, 14, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Halder, A.; Sahu, J. (INVITED) Bi-doped optical fibers and fiber amplifiers. Opt. Mater. X 2023, 17, 100219. [Google Scholar] [CrossRef]
- Khegai, A.; Alyshev, S.; Vakhrushev, A.; Riumkin, K.; Umnikov, A.; Firstov, S. Recent advances in Bi-doped silica-based optical fibers: A short review. J. Non-Cryst. Solids X 2022, 16, 100126. [Google Scholar] [CrossRef]
- Luo, J.; Mikhailov, V.; Windeler, R.; Inniss, D.; DiGiovanni, D. Review of bismuth-doped fibers used in O-band optical amplifiers—Scientific challenges and outlook. Int. J. Appl. Glass Sci. 2023, 14, 480–487. [Google Scholar] [CrossRef]
- Firstov, S.V.; Alyshev, S.V.; Riumkin, K.E.; Khegai, A.M.; Kharakhordin, A.V.; Melkumov, M.A.; Dianov, E.M. Laser-Active Fibers Doped With Bismuth for a Wavelength Region of 1.6–1.8 μm. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 0902415. [Google Scholar] [CrossRef]
- Wang, S.; Zhai, Z.; Halder, A.; Sahu, J.K. Bi-doped fiber amplifiers in the E+S band with a high gain per unit length. Opt. Lett. 2023, 48, 5635–5638. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yin, X.; Gu, Z.; He, L.; Li, W.; Chen, Y.; Xing, Y.; Chu, Y.; Dai, N.; Li, J. High bismuth-doped germanosilicate fiber for efficient E+S-band amplification. Opt. Lett. 2024, 49, 314–317. [Google Scholar] [CrossRef]
- Alyshev, S.; Vakhrushev, A.; Khegai, A.; Firstova, E.; Riumkin, K.; Melkumov, M.; Iskhakova, L.; Umnikov, A.; Firstov, S. Impact of doping profiles on the formation of laser-active centers in bismuth-doped GeO2–SiO2 glass fibers. Photonics Res. 2024, 12, 260–270. [Google Scholar] [CrossRef]
- Vakhrushev, A.; Umnikov, A.; Lobanov, A.; Firstova, E.; Evlampieva, E.; Riumkin, K.; Alyshev, A.; Khegai, A.; Guryanov, A.; Iskhakova, L.; et al. W-type and Graded-index bismuth-doped fibers for efficient lasers and amplifiers operating in E-band. Opt. Express 2022, 30, 1490–1498. [Google Scholar] [CrossRef]
- Sokolov, V.; Plotnichenko, V.; Dianov, E. The origin of near-IR luminescence in bismuth-doped silica and germania glasses free of other dopants: First-principle study. Opt. Mater. Express 2013, 3, 1059–1074. [Google Scholar] [CrossRef]
- Fuertes, V.; Durak, F.; Rivera, V.; Grégoire, N.; Morency, S.; Sharma, M.; Wang, L.; Messaddeq, Y.; LaRochelle, S. Tailoring optical properties of bismuth-doped germanosilicate fibers for E/S band amplification. J. Non-Cryst. Solids 2023, 613, 122381. [Google Scholar] [CrossRef]
- Gumenyuk, R.; Melkumov, M.; Khopin, V.; Dianov, E.; Okhotnikov, O. Effect of absorption recovery in bismuth-doped silica glass at 1450 nm on soliton grouping in fiber laser. Sci. Rep. 2014, 4, 7044. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yin, X.; He, L.; Gu, Z.; Li, W.; Chen, Y.; Xing, Y.; Chu, Y.; Dai, N.; Li, J. A 16 m High Bismuth-Doped Fiber Amplifier Provides 47.9 dB Gain in E+S-band. In Proceedings of the 2024 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 24–28 March 2024; pp. 1–3. [Google Scholar]
- Maes, F.; Sharma, M.; Wang, L.; Jiang, Z. Gain Behavior of E+S band Hybrid Bismuth/Erbium-doped Fiber Amplifier Under Different Conditions. In Proceedings of the European Conference and Exhibition on Optical Communication, Basel, Switzerland, 18–22 September 2022; p. We5-2. [Google Scholar]
- Ososkov, Y.; Khegai, A.; Firstov, S.; Riumkin, K.; Alyshev, S.; Kharakhordin, A.; Lobanov, A.; Guryanov, A.; Melkumov, M. Pump-efficient flattop O+E-bands bismuth-doped fiber amplifier with 116 nm–3 dB gain bandwidth. Opt. Express 2021, 29, 44138–44145. [Google Scholar] [CrossRef]
- Yin, X.; Liu, S.; He, L.; Gu, Z.; Li, W.; Dai, N.; Li, J. High gain and low noise O+E bands fiber amplification based on hybrid bismuth-doped fiber. Opt. Laser Technol. 2024, 177, 111075. [Google Scholar] [CrossRef]
- Wang, Y.; Thipparapu, N.K.; Richardson, D.J.; Sahu, J.K. Ultra-broadband bismuth-doped fiber amplifier covering a 115-nm bandwidth in the O and E bands. J. Light. Technol. 2021, 39, 795–800. [Google Scholar] [CrossRef]
- Nemova, G.; Qiao, J.; Chen, L.R.; Firstov, S.V.; Dianov, E.M. Dual-wavelength, cascaded cavities bismuth-doped fiber laser in 1.7 μm wavelength range. In Proceedings of the Fiber Lasers XVI: Technology and Systems, San Diego, CA, USA, 4–7 February 2019; Carter, A.L., Dong, L., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2019; Volume 10897, p. 1089711. [Google Scholar] [CrossRef]
- Nemova, G.; Jin, X.; Chen, L.R.; Firstov, S.V.; Sezerman, O. Modeling and experimental characterization of a dual-wavelength Bi-doped fiber laser with cascaded cavities. J. Opt. Soc. Am. B 2020, 37, 1453–1460. [Google Scholar] [CrossRef]
- Ahmad, H.; Roslan, N.; Zaini, M.; Samion, M.; Reduan, S.; Wang, Y.; Wang, S.; Sahu, J.; Yasin, M. Generation of multiwavelength bismuth-doped fiber laser based on all-fiber Lyot filter. Opt. Fiber Technol. 2023, 81, 103509. [Google Scholar] [CrossRef]
- Ahmad, H.; Samion, M.Z.; Kamely, A.A.; Wang, S.; Wang, Y.; Sahu, J.K. Multiwavelength Brillouin Generation in Bismuth-Doped Fiber Laser With Single- and Double-Frequency Spacing. J. Light. Technol. 2020, 38, 6886–6896. [Google Scholar] [CrossRef]
- Ahmad, H.; Kamaruddin, N.; Aidit, S.; Samion, M.; Zaini, M.K.A.; Bayang, L.; Wang, Y.; Wang, S.; Sahu, J.; Yasin, M. Multi-wavelength Bismuth-doped fiber laser in 1.3 μm based on a compact two-mode fiber filter. Opt. Laser Technol. 2021, 144, 107390. [Google Scholar] [CrossRef]
- Ahmad, H.; Aidit, S.N.; Samion, M.Z.; Wang, S.; Wang, Y.; Sahu, J.K. Tunable Dual-Wavelength Bismuth Fiber Laser with 37.8-GHz Frequency Spacing. J. Light. Technol. 2021, 39, 6617–6623. [Google Scholar] [CrossRef]
- Firstov, S.; Umnikov, A.; Kharakhordin, A.; Vakhrushev, A.; Firstova, E.; Alyshev, S.; Khegai, A.; Riumkin, K.; Ososkov, Y.; Guryanov, A.; et al. Cladding-pumped bismuth-doped fiber laser. Opt. Lett. 2022, 47, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Vakhrushev, A.; Umnikov, A.; Alyshev, S.; Khegai, A.; Firstova, E.; Iskhakova, L.; Guryanov, A.; Melkumov, M.; Firstov, S. Double-Clad Bismuth-Doped Fiber with a Rectangular Inner Cladding for Laser Application. Photonics 2022, 9, 788. [Google Scholar] [CrossRef]
- Vakhrushev, A.; Ososkov, Y.; Alyshev, S.; Khegai, A.; Umnikov, A.; Afanasiev, F.; Riumkin, K.; Firstova, E.; Guryanov, A.; Melkumov, M.; et al. Output Power Saturation Effect in Cladding-Pumped Bismuth-Doped Fiber Lasers. J. Light. Technol. 2023, 41, 709–715. [Google Scholar] [CrossRef]
- Vakhrushev, A.; Umnikov, A.; Dostovalov, A.; Riumkin, K.; Alyshev, S.; Firstova, E.; Khegai, A.; Melkumov, M.; Babin, S.; Firstov, S. Cladding-pumped laser and amplifier for E- and S-bands based on multimode bismuth-doped graded-index fibers: Toward “watt-level” output power. Opt. Lett. 2024, 49, 1828–1831. [Google Scholar] [CrossRef]
- Lau, K.Y.; Firstov, S.; Cui, Y.; Liu, X.; Afanasiev, F.; Qiu, J. Highly Efficient O-Band Rectangular Pulse Emission in a Figure-of-Nine Bismuth-Doped Fiber Laser. J. Light. Technol. 2023, 41, 6383–6388. [Google Scholar] [CrossRef]
- Ahmad, H.; Aidit, S.N.; Ooi, S.I.; Samion, M.Z.; Wang, S.; Wang, Y.; Sahu, J.K.; Zamzuri, A.K. 1.3 µm dissipative soliton resonance generation in Bismuth doped fiber laser. Sci. Rep. 2021, 11, 6356. [Google Scholar] [CrossRef]
- Kobtsev, S.; Komarov, A. Noise-like pulses: Stabilization, production, and application. J. Opt. Soc. Am. B 2024, 41, 1116–1127. [Google Scholar] [CrossRef]
- Lau, K.Y.; Firstov, S.; Luo, Z.; Hu, M.; Senatorov, A.; Umnikov, A.; Xu, B.; Liu, X.; Qiu, J. 1450 nm High Energy Noisy Multi-Pulse Mode-Locking in Bismuth-Doped Fiber Laser. J. Light. Technol. 2024, 42, 2103–2110. [Google Scholar] [CrossRef]
- Ahmad, H.; Azri, M.; Aidit, S.; Yusoff, N.; Zamzuri, A.; Samion, M.; Wang, S.; Wang, Y.; Sahu, J. 1.3 μm passively Q-Switched bismuth doped fiber laser using Nb2C saturable absorber. Opt. Mater. 2021, 116, 111087. [Google Scholar] [CrossRef]
- Ahmad, H.; Hidayah Abdul Kahar, N.; Yusoff, N.; Zharif Samion, M.; Aisyah Reduan, S.; Faizal Ismail, M.; Bayang, L.; Wang, Y.; Wang, S.; Sahu, J.K. Passively Q-switched 1.3 μm bismuth doped-fiber laser based on transition metal dichalcogenides saturable absorbers. Opt. Fiber Technol. 2022, 69, 102851. [Google Scholar] [CrossRef]
- Khegai, A.; Firstov, S.; Riumkin, K.; Afanasiev, F.; Melkumov, M. Q-Switched Bismuth-Doped Fiber Laser at 1330 nm. IEEE Photonics Technol. Lett. 2019, 31, 963–966. [Google Scholar] [CrossRef]
- Kharakhordin, A.; Rybaltovsky, A.; Popov, S.; Ryakhovskiy, D.; Afanasiev, F.; Alyshev, S.; Khegai, A.; Melkumov, M.; Firstova, E.; Chamorovsky, Y.; et al. Random Laser Operating at Near 1.67 μm Based on Bismuth-Doped Artificial Rayleigh Fiber. J. Light. Technol. 2023, 41, 6362–6368. [Google Scholar] [CrossRef]
- Wang, H.; Jia, W.; Yao, Y.; Yang, X.; Melkumov, M.; Firstov, S.; Lobanov, A.; Dong, Z.; Luo, Z. Generation of 1.3/1.4 μm random fiber laser by bismuth-doped phosphosilicate fiber. Chin. Opt. Lett. 2023, 21, 071401. [Google Scholar] [CrossRef]
- Han, B.; Cheng, Q.; Tao, Y.; Ma, Y.; Liang, H.; Ma, R.; Qi, Y.; Zhao, Y.; Wang, Z.; Wu, H. Spectral Manipulations of Random Fiber Lasers: Principles, Characteristics, and Applications. Laser Photonics Rev. 2024, 18, 2400122. [Google Scholar] [CrossRef]
- Monga, K.J.J.; Botzung, C.; Landry, N.; LaRochelle, S. Efficiency optimization of E-band bismuth-doped ring-cavity fiber laser with low pump power. Opt. Fiber Technol. 2023, 81, 103499. [Google Scholar] [CrossRef]
- ChmielowskI, P.; Nikodem, M. Widely tunable continuous-wave fiber laser in the 1.55–1.8 μm wavelength region. Opt. Express 2022, 30, 42300–42307. [Google Scholar] [CrossRef] [PubMed]
- Winzer, P.J.; Neilson, D.T.; Chraplyvy, A.R. Fiber-optic transmission and networking: The previous 20 and the next 20 years. Opt. Express 2018, 26, 24190–24239. [Google Scholar] [CrossRef]
- Donodin, A.; Hazarika, P.; Tan, M.; Pratiwi, D.; Noor, S.; Phillips, I.; Harper, P.; Forysiak, W. Experimental comparison of E-band BDFA and Raman amplifier performance over 50 km G.652.D fiber using 30 GBaud DP-16-QAM and DP-64-QAM signals. Opt. Lett. 2024, 49, 1429–1432. [Google Scholar] [CrossRef]
- Mikhailov, V.; Sun, Y.; Luo, J.; Khan, F.; Inniss, D.; Dulashko, Y.; Lee, M.; Mann, J.; Windeler, R.S.; Westbrook, P.S.; et al. 1255–1355 nm (17.6 THz) bandwidth O-band bismuth doped fiber amplifier pumped using uncooled multimode (mm) 915 nm laser diode. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Wakayama, Y.; Elson, D.J.; Mikhailov, V.; Maneekut, R.; Luo, J.; Yoshikane, N.; Inniss, D.; Tsuritani, T. 400GBASE-LR4 and 400GBASE-LR8 Transmission Reach Maximization Using Bismuth-Doped Fiber Amplifiers. J. Light. Technol. 2023, 41, 3908–3915. [Google Scholar] [CrossRef]
- Elson, D.J.; Wakayama, Y.; Mikhailov, V.; Luo, J.; Yoshikane, N.; Inniss, D.; Tsuritani, T. 9.6-THz Single Fibre Amplifier O-band Coherent DWDM Transmission. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar] [CrossRef]
- Puttnam, B.J.; Luís, R.S.; Huang, Y.; Phillips, I.; Chung, D.; Fontaine, N.K.; Boriboon, B.; Rademacher, G.; Mazur, M.; Dallachiesa, L.; et al. 321 Tb/s E/S/C/L-Band Transmission With E-Band Bismuth-Doped Fiber Amplifier and Optical Processor. J. Light. Technol. 2024, 42, 4006–4012. [Google Scholar] [CrossRef]
- Elson, D.J.; Wakayama, Y.; Mikhailov, V.; Inniss, D.; Luo, J.; Yoshikane, N. BDFA Supported Transmission of 400GBASE-LR8 Signals Over Deployed Multimanufacturer 4-Core Fibre. IEEE Photonics Technol. Lett. 2023, 35, 842–845. [Google Scholar] [CrossRef]
- Khegai, A.; Ososkov, Y.; Firstov, S.; Riumkin, K.; Alyshev, S.; Kharakhordin, A.; Lobanov, A.; Guryanov, A.; Melkumov, M. O+E Band BDFA with Flattop 116 nm Gain Bandwidth Pumped with 250 mW at 1256 nm. In Proceedings of the Optical Fiber Communication Conference, Washington, DC, USA, 6–11 June 2021; p. Tu1E-4. [Google Scholar]
- Vakhrushev, A.; Khegai, A.; Alyshev, S.; Riumkin, K.; Kharakhordin, A.; Firstova, E.; Umnikov, A.; Lobanov, A.; Afanasiev, F.; Guryanov, A.; et al. Cladding pumped bismuth-doped fiber amplifiers operating in O-, E-, and S-telecom bands. Opt. Lett. 2023, 48, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Halder, A.; Richardson, D.J.; Sahu, J. A highly temperature-insensitive Bi-doped fiber amplifier in the E+S-band with 20 dB flat gain from 1435–1475 nm. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 5–9 March 2023; p. Th3C-2. [Google Scholar]
- Wang, L.; Fung, Y.; Sharma, M.; Botzung, C.; LaRochelle, S.; Jiang, Z. Bandwidth-dependent gain deviation in E+S band bismuth doped fiber amplifier under automatic gain control. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 5–9 March 2023; p. Th3C-3. [Google Scholar]
- Donodin, A.; Manuylovich, E.; Dvoyrin, V.; Forysiak, W.; Turitsyn, S.K. Pump Optimization of E-band Bismuth-Doped Fiber Amplifier. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 5–9 March 2023; p. Th2A-11. [Google Scholar]
- Maes, F.; Sharma, M.; Wang, L.; Jiang, Z. High power BDF/EDF hybrid amplifier providing 27 dB gain over 90 nm in the E+S band. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 6–10 March 2022; p. Th4C-8. [Google Scholar]
- Firstov, S.V.; Alyshev, S.V.; Riumkin, K.E.; Khopin, V.F.; Guryanov, A.N.; Melkumov, M.A.; Dianov, E.M. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band. Sci. Rep. 2016, 6, 28939. [Google Scholar] [CrossRef] [PubMed]
- Bottrill, K.; Taengnoi, N.; Wang, Y.; Sahu, J.; Petropoulos, P. 1200 km Coherent O-band Transmission using In-line BDFAs and Standard Single-mode Fibre. In Proceedings of the 2024 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 24–28 March 2024; pp. 1–3. [Google Scholar]
Method | Wavelength Spacing, nm | Number of Lasing Lines | Center Wavelength, nm | Output Power, mW | Pump Power, W | Ref. |
---|---|---|---|---|---|---|
Lyot filter | 0.192 | 21 | 1312 | 1 | 0.675 | [30] |
SBS | 0.07 | 14 | 1320.3 | 0.52 | 1.02 | [31,33] |
TMF filter | 0.69 | 18 | 1323.89 | 0.46 | 1.03 | [32] |
FBGs | 2 | 2 | 1728 | 0.05 | 0.35 | [29] |
Band | Range, nm | Grid | Modulation | System | Speed | Distance, km | Fiber | Ref. |
---|---|---|---|---|---|---|---|---|
E-band | 1430, 1445, | DP-16-QAM | 30 GBd/s | 50 | G.652.D | [51] | ||
1460 nm | DP-64-QAM | |||||||
O-band | 1255–1355 | CWDM | PAM-4 | LR4 QSFP-DD | 4 × 100 Gb/s | 20 | G.652 | [52] |
(17.6 THz) | (53 GBd/s) | |||||||
O-band | 1283–1334 | DWDM | DP-16-QAM | 40.9 Tb/s | 45 | G.657.A1 | [54] | |
(9.6 THz) | ||||||||
O-band | 1283–1334 | DWDM | DP-16-QAM | 36.8 Tb/s | 135 | G.657.A1 | [54] | |
(9.6 THz) | ||||||||
O-band | 1274–1309 | LWDM | PAM-4 | 400GBASE-LR4 | 4 × 100 Gb/s | 20 | G.657.A1 | [53] |
(6.3 THz) | (53 GBd/s) | |||||||
O-band | 1271–1331 | CWDM | PAM-4 | 400GBASE-LR8 | 8 × 50 Gb/s | 90 | G.657.A1 | [53] |
(10.8 THz) | (26 GBd/s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyshev, S.; Khegai, A.; Umnikov, A.; Firstov, S. Bismuth-Doped Fiber Lasers and Amplifiers Operating from O- to U-Band: Current State of the Art and Outlook. Photonics 2024, 11, 663. https://doi.org/10.3390/photonics11070663
Alyshev S, Khegai A, Umnikov A, Firstov S. Bismuth-Doped Fiber Lasers and Amplifiers Operating from O- to U-Band: Current State of the Art and Outlook. Photonics. 2024; 11(7):663. https://doi.org/10.3390/photonics11070663
Chicago/Turabian StyleAlyshev, Sergey, Aleksandr Khegai, Andrey Umnikov, and Sergei Firstov. 2024. "Bismuth-Doped Fiber Lasers and Amplifiers Operating from O- to U-Band: Current State of the Art and Outlook" Photonics 11, no. 7: 663. https://doi.org/10.3390/photonics11070663
APA StyleAlyshev, S., Khegai, A., Umnikov, A., & Firstov, S. (2024). Bismuth-Doped Fiber Lasers and Amplifiers Operating from O- to U-Band: Current State of the Art and Outlook. Photonics, 11(7), 663. https://doi.org/10.3390/photonics11070663