High-Power GHz Burst-Mode All-Fiber Laser System with Sub 300 fs Pulse Duration
Abstract
1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, S.; Teng, H.; Zhu, X.; Gao, Y.; Wang, K.; Wang, X.; Wang, Y.; Yu, S.; Zhao, K.; Wei, Z. Characterizing 86-attosecond isolated pulses based on amplitude gating of high harmonic generation [Invited]. Chin. Opt. Lett. 2023, 21, 113201. [Google Scholar] [CrossRef]
- Köttig, F.; Tani, F.; Uebel, P.; Russell, P.S.J.; Travers, J.C. High Average-Power and Energy Deep-Ultraviolet Femtosecond Pulse Source Driven by 10 MHz Fibre-Laser. In Proceedings of the 2015 European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, Munich, Germany, 21 June 2015; p. PD_A_7. [Google Scholar]
- Meyer, F.; Hekmat, N.; Vogel, T.; Omar, A.; Mansourzadeh, S.; Fobbe, F.; Hoffmann, M.; Wang, Y.; Saraceno, C.J. Milliwatt-class broadband THz source driven by a 112 W, sub-100 fs thin-disk laser. Opt. Express 2019, 27, 30340–30349. [Google Scholar] [CrossRef]
- Tan, Y.X.; Chu, W.; Wang, P.; Li, W.B.; Wang, Z.; Cheng, Y. Water-assisted laser drilling of high-aspect-ratio 3D microchannels in glass with spatiotemporally focused femtosecond laser pulses. Opt. Mater. Express 2019, 9, 1971–1978. [Google Scholar] [CrossRef]
- Xia, K.B.; Ren, N.F.; Lin, Q.; Li, T.; Gao, F.Q.; Yang, H.Y.; Song, S.W. Experimental investigation of femtosecond laser through-hole drilling of stainless steel with and without transverse magnetic assistance. Appl. Opt. 2021, 60, 1399–1410. [Google Scholar] [CrossRef]
- Wang, J.; Sun, S.; Zhang, H.; Hasegawa, S.; Wang, P.; Hayasaki, Y. Holographic Femtosecond Laser Parallel Processing Method Based on the Fractional Fourier Transform. Opt. Lasers Eng. 2021, 146, 106704. [Google Scholar] [CrossRef]
- Raciukaitis, G. Ultra-Short Pulse Lasers for Microfabrication: A Review. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1100112. [Google Scholar] [CrossRef]
- Kerse, C.; Kalaycioglu, H.; Elahi, P.; Cetin, B.; Kesim, D.K.; Akcaalan, O.; Yavas, S.; Asik, M.; Oktem, B.; Hoogland, H. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 2016, 537, 84. [Google Scholar] [CrossRef]
- Park, M.; Gu, Y.R.; Mao, X.L.; Grigoropoulos, C.P.; Zorba, V. Mechanisms of ultrafast GHz burst fs laser ablation. Sci. Adv. 2023, 9, eadf6397. [Google Scholar] [CrossRef]
- Bonamis, G.; Mishchick, K.; Audouard, E.; Honninger, C.; Mottay, E.; Lopez, J.; Manek-Honninger, I. High efficiency femtosecond laser ablation with gigahertz level bursts. J. Laser Appl. 2019, 31, 022205. [Google Scholar] [CrossRef]
- Mishchik, K.; Bonamis, G.; Qiao, J.; Lopez, J.; Audouard, E.; Mottay, E.; Hönninger, C.; Manek-Hönninger, I. High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source. Opt. Lett. 2019, 44, 2193–2196. [Google Scholar] [CrossRef]
- Bonamis, G.; Audouard, E.; Honninger, C.; Lopez, J.; Mishchik, K.; Mottay, E.; Manek-Honninger, I. Systematic study of laser ablation with GHz bursts of femtosecond pulses. Opt. Express 2020, 28, 27702–27714. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, X.; Yang, L.; Tong, M.; Norwood, R.A.; Wei, H.; Chu, Y.; Li, H.; Dai, N.; Peng, J.; et al. Numerical investigation of GHz repetition rate fundamentally mode-locked all-fiber lasers. Opt. Express 2019, 27, 14487–14504. [Google Scholar] [CrossRef]
- Hu, M.; Shen, J.; Cao, Y.; Yuan, S.; Zeng, H. Generation of 48 fs, 1 GHz Fundamentally Mode-Locked Pulses Directly from an Yb-doped “Solid-State Fiber Laser”. Photonics 2023, 10, 192. [Google Scholar] [CrossRef]
- Yang, H.-W.; Kim, C.; Choi, S.Y.; Kim, G.-H.; Kobayashi, Y.; Rotermund, F.; Kim, J. 1.2-GHz repetition rate, diode-pumped femtosecond Yb:KYW laser mode-locked by a carbon nanotube saturable absorber mirror. Opt. Express 2012, 20, 29518–29523. [Google Scholar] [CrossRef]
- Zheng, L.; Tian, W.; Liu, H.; Wang, G.; Bai, C.; Xu, R.; Zhang, D.; Han, H.; Zhu, J.; Wei, Z. 2-GHz watt-level Kerr-lens mode-locked Yb:KGW laser. Opt. Express 2021, 29, 12950–12957. [Google Scholar] [CrossRef]
- Chen, H.-W.; Chang, G.; Xu, S.; Yang, Z.; Kaertner, F.X. 3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser. Opt. Lett. 2012, 37, 3522–3524. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Gao, X.; Niu, F.; Jiang, T.; Wang, A.; Zhang, Z. 1 GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency. Appl. Opt. 2015, 54, 8350–8353. [Google Scholar] [CrossRef]
- Elahi, P.; Akçaalan, Ö.; Ertek, C.; Eken, K.; Ilday, F.Ö.; Kalaycoğlu, H. High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal. Opt. Lett. 2018, 43, 535–538. [Google Scholar] [CrossRef]
- Fan, Y.; Xiu, H.; Lin, W.; Chen, X.; Hu, X.; Wang, W.; Wen, J.; Tian, H.; Hao, M.; Wei, C.; et al. Nonlinear chirped pulse amplification for a 100-W-class GHz femtosecond all-fiber laser system at 1.5 μm. High Power Laser Sci. Eng. 2023, 11, e50. [Google Scholar] [CrossRef]
- Bartulevicius, T.; Lipnickas, M.; Petrauskiene, V.; Madeikis, K.; Michailovas, A. 30 W-average-power femtosecond NIR laser operating in a flexible GHz-burst-regime. Opt. Express 2022, 30, 36849–36862. [Google Scholar] [CrossRef]
- Cao, X.; Li, F.; Song, D.; Wang, Y.; Li, Q.; Zhao, H.; Zhao, W.; Wen, W.; Si, J. Environmentally stable all-fiber femtosecond laser for industrial application based on a SESAM mode-locked ytterbium-doped laser. Microw. Opt. Technol. Lett. 2024, 66, e34119. [Google Scholar] [CrossRef]
Dispersion Control | Type of Dispersion | Values |
---|---|---|
Zero dispersion control of active fiber loop | Second-order dispersion of single-mode fiber in the fiber loop | 0.1424 ps2 |
Third-order dispersion of single-mode fiber in the fiber loop | 2.645 × 10−4 ps3 | |
CFBG used in the fiber loop | −0.143 ps2 | |
Stretcher | Second-order dispersion of the CFBG stretcher | 28.148 ps2 |
Third-order dispersion of the CFBG stretcher | −0.241 ps3 | |
Second-order dispersion tuning range of the CFBG stretcher | ≥0.823 ps2 | |
Third-order dispersion tuning range of the CFBG stretcher | ≥0.0576 ps3 | |
Fiber dispersion in the CPA system | Second-order dispersion of the fibers | ~0.149 ps2 |
Third-order dispersion of the fibers | 2.76 × 10−4 ps3 | |
Compressor | Linear distance of the grating pair | 95 cm |
Second-order dispersion of the grating pair | −28.1 ps2 | |
Third-order dispersion of the grating pair | 0.241 ps3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zhao, W.; Fu, Y.; Xing, J.; Wen, W.; Wang, L.; Li, Q.; Cao, X.; Zhao, H.; Wang, Y. High-Power GHz Burst-Mode All-Fiber Laser System with Sub 300 fs Pulse Duration. Photonics 2024, 11, 570. https://doi.org/10.3390/photonics11060570
Li F, Zhao W, Fu Y, Xing J, Wen W, Wang L, Li Q, Cao X, Zhao H, Wang Y. High-Power GHz Burst-Mode All-Fiber Laser System with Sub 300 fs Pulse Duration. Photonics. 2024; 11(6):570. https://doi.org/10.3390/photonics11060570
Chicago/Turabian StyleLi, Feng, Wei Zhao, Yuxi Fu, Jixin Xing, Wenlong Wen, Lei Wang, Qianglong Li, Xue Cao, Hualong Zhao, and Yishan Wang. 2024. "High-Power GHz Burst-Mode All-Fiber Laser System with Sub 300 fs Pulse Duration" Photonics 11, no. 6: 570. https://doi.org/10.3390/photonics11060570
APA StyleLi, F., Zhao, W., Fu, Y., Xing, J., Wen, W., Wang, L., Li, Q., Cao, X., Zhao, H., & Wang, Y. (2024). High-Power GHz Burst-Mode All-Fiber Laser System with Sub 300 fs Pulse Duration. Photonics, 11(6), 570. https://doi.org/10.3390/photonics11060570