Asymmetrical Three-Dimensional Conformal Imaging Lens
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Methods
function particle_trajectory() |
% Define constants |
a = 1; |
b = 2; |
c = 2; |
% Initial conditions |
x0 = 1; |
y0 = 1; |
z0 = 1; |
kx0 = −0.5; |
ky0 = 1; |
kz0 = 0; |
% Time span |
tspan = [0 100]; |
% Initial state vector |
initial_conditions = [x0 y0 z0 kx0 ky0 kz0]; |
% Solve the system of differential equations |
[t, sol] = ode45(@(t, vars) odefunc(t, vars, a, b, c), tspan, initial_conditions); |
% Extract solutions |
x = sol(:, 1); |
y = sol(:, 2); |
z = sol(:, 3); |
% Plot the trajectory |
plot3(x, y, z, ‘r’, ‘LineWidth’, 2); |
xlabel(‘x’); |
ylabel(‘y’); |
zlabel(‘z’); |
grid on; |
axis equal; |
box on; |
title(‘Particle Trajectory’); |
end |
function dvarsdt = odefunc(~, vars, a, b, c) |
% Unpack variables |
x = vars(1); |
y = vars(2); |
z = vars(3); |
kx = vars(4); |
ky = vars(5); |
kz = vars(6); |
% Refractive index |
n = sqrt(2 − (x/a)^2 − (y/b)^2 − (z/c)^2); |
% Magnitude of the wave vector |
k_mag = sqrt(kx^2 + ky^2 + kz^2); |
% Derivatives of the refractive index |
Dx = −x/(a^2 * n); |
Dy = −y/(b^2 * n); |
Dz = −z/(c^2 * n); |
% Define the differential equations |
dxdt = 1/n * kx/k_mag; |
dydt = 1/n * ky/k_mag; |
dzdt = 1/n * kz/k_mag; |
dkxdt = k_mag/n^2 * Dx; |
dkydt = k_mag/n^2 * Dy; |
dkzdt = k_mag/n^2 * Dz; |
% Return the derivatives |
dvarsdt = [dxdt; dydt; dzdt; dkxdt; dkydt; dkzdt]; |
end |
References
- Pendry, J.B.; David, S.; David, R.S. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, U. Optical conformal mapping. Science 2006, 312, 1777–1780. [Google Scholar] [CrossRef]
- Chen, H.; Hou, B.; Chen, S.; Ao, X.; Wen, W.; Chan, C.T. Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. Phys. Rev. Lett. 2009, 102, 183903. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chan, C.T. Transformation media that rotate electromagnetic fields. Appl. Phys. Lett. 2007, 90, 241105. [Google Scholar] [CrossRef]
- Zang, X.; Jiang, C. Two-dimensional elliptical electromagnetic superscatterer and superabsorber. Opt. Express 2010, 18, 6891–6899. [Google Scholar] [CrossRef] [PubMed]
- Narimanov, E.E.; Kildishev, A.V. Optical black hole: Broadband omnidirectional light absorber. Appl. Phys. Lett. 2009, 95, 041106. [Google Scholar] [CrossRef]
- Greenleaf, A.; Kurylev, Y.; Lassas, M.; Uhlmann, G. Electromagnetic Wormholes and Virtual Magnetic Monopoles from Metamaterials. Phys. Rev. Lett. 2007, 99, 183901. [Google Scholar] [CrossRef]
- Kadic, M.; Dupont, G.; Enoch, S.; Guenneau, S. Invisible waveguides on metal plates for plasmonic analogs of electromagnetic wormholes. Phys. Rev. A 2014, 90, 043812. [Google Scholar] [CrossRef]
- Sheng, C.; Bekenstein, R.; Liu, H.; Zhu, S.; Segev, M. Wavefront shaping through emulated curved space in waveguide settings. Nat. Commun. 2016, 7, 10747. [Google Scholar] [CrossRef]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966. [Google Scholar] [CrossRef]
- Leonhardt, U. Perfect imaging without negative refraction. New J. Phys. 2009, 11, 093040. [Google Scholar] [CrossRef]
- Blaikie, R.J. Comment on Perfect imaging without negative refraction. New J. Phys. 2010, 12, 058001. [Google Scholar] [CrossRef]
- Leonhardt, U. Reply to comment on ‘Perfect imaging without negative refraction’. New J. Phys. 2010, 12, 058002. [Google Scholar] [CrossRef]
- Kinsler, P.; Favaro, A. Comment on Reply to comment on “Perfect imaging without negative refraction”. New J. Phys. 2011, 13, 028001. [Google Scholar] [CrossRef]
- Leonhardt, U. Reply to Comment on Reply to Comment on Perfect Imaging without Negative Refraction. arXiv 2010, arXiv:1010.4161. [Google Scholar]
- Leonhardt, U.; Philbin, T.G. Perfect imaging with positive refraction in three dimensions. Phys. Rev. A 2010, 81, 011804. [Google Scholar] [CrossRef]
- Badri, S.H.; Gilarlue, M.M.; Taghipour-Farshi, H. Rectangular Maxwells fisheye lens via transformation optics as a crossing medium for dissimilar waveguides. JOSB 2020, 37, 2437–2443. [Google Scholar] [CrossRef]
- Mateo-Segura, C.; Dyke, A.; Dyke, H.; Haq, S.; Hao, Y. Flat Luneburg lens via transformation optics for directive antenna applications. IEEE Trans. Antennas Propag. 2014, 62, 1945–1953. [Google Scholar] [CrossRef]
- Synge, J.L. The absolute optical instrument. Trans. Am. Math. Soc. 1938, 44, 32–46. [Google Scholar] [CrossRef]
- Zhou, Y.; Hao, Z.; Zhao, P.; Chen, H. Solid Immersion Maxwell’s Fish-Eye Lens Without Drain. Phys. Rev. Appl. 2022, 17, 034039. [Google Scholar] [CrossRef]
- Li, D.; Zhu, S.; Zhang, M.; Nian, Y.; Zhao, M.; Chen, X.; Yi, J. Synthetic Beam Scanning and Super-Resolution Coincidence Imaging Based on Randomly Excited Antenna Array. IEEE Trans. Geosci. Remote Seng. 2023, 61, 2002414. [Google Scholar] [CrossRef]
- Lin, M.; Ratni, B.; Qi, P.; Yi, J.; André, L.; Shah, N.B. Flexible Generation and Manipulation of Microwave Bottle Beam Using a Reconfigurable Metamirror. Adv. Photo. Res. 2023, 4, 2300156. [Google Scholar] [CrossRef]
- Miñano, J.C. Perfect imaging in a homogeneous three-dimensional region. Opt. Express 2006, 14, 9627–9635. [Google Scholar] [CrossRef]
- Chen, H. Imaging along conformal curves. Phys. Rev. A 2018, 98, 043843. [Google Scholar] [CrossRef]
- Chen, J.; Su, G.; Xu, S.; Chen, M.; Liu, Y.; Fang, D.; Zhou, J. Ultrabroadband and Multifunctional Achromatic Mikaelian Lens on an Elastic Plate. Phys. Rev. Appl. 2022, 18, 064047. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, W. The Morse lens. Chin. Opt. Lett. 2020, 18, 062403. [Google Scholar] [CrossRef]
- Tyc, T.; Danner, A. Frequency spectra of absolute optical instruments. New J. Phys. 2012, 14, 085023. [Google Scholar] [CrossRef]
- Tyc, T. Spectra of absolute instruments from the WKB approximation. New J. Phys. 2013, 15, 065005. [Google Scholar] [CrossRef]
- Tyc, T.; Danner, A. Absolute optical instruments, classical superintegrability, and separability of the Hamilton-Jacobi equation. Phys. Rev. A 2017, 96, 053838. [Google Scholar] [CrossRef]
- Tyc, T.; Herzánová, L.; Šarbort, M.; Bering, K. Absolute instruments and perfect imaging in geometrical optics. New J. Phys. 2011, 13, 115004. [Google Scholar] [CrossRef]
- Fonseca, N.J.G.; Liao, Q.; Quevedo-Teruel, O. Equivalent planar lens ray-tracing model to design modulated geodesic lenses using non-Euclidean transformation optics. IEEE Trans. Antennas Prag. 2020, 68, 3410–3422. [Google Scholar] [CrossRef]
- Chen, Q.; Horsley, S.A.R.; Fonseca, N.J.G.; Tyc, T.; Quevedo-Teruel, O. Double-layer geodesic and gradient-index lenses. Nat. Commun. 2022, 13, 2354. [Google Scholar] [CrossRef]
- Šarbort, M.; Tyc, T. Spherical media and geodesic lenses in geometrical optics. J. Opt. 2012, 14, 075705. [Google Scholar] [CrossRef]
- Tyc, T.; Dao, H.L.; Danner, A.J. Absolute optical instruments without spherical symmetry. Phys. Rev. A 2015, 92, 053827. [Google Scholar] [CrossRef]
- Blair, D.E. Inversion Theory and Conformal Mapping; American Mathematical Society: Ann Arbor, MI, USA, 2000. [Google Scholar]
- Junqueira, M.A.; Gabrielli, L.H.; Beltrán-Mejía, F.; Spadoti, D.H. Three-dimensional quasi-conformal transformation optics through numerical optimization. Opt. Express 2016, 24, 16465. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.G.; Teixeira, P.A.; Gabrielli, L.H.; Beltrán-Mejía, F.; Spadoti, D.H. Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics. Opt. Express 2017, 25, 23517–23522. [Google Scholar] [CrossRef]
- Leonhardt, U.; Philbin, T. Geometry and Light: The Science of Invisibility; Courier Corporation: North Chelmsford, MA, USA, 2010. [Google Scholar]
- Kravtsov, A.Y.; Orlov, Y.I. Geometrical Optics of Inhomogeneous Media; Springer: Berlin/Heidelberg, Germany; Moscow, Russia, 1990. [Google Scholar]
- Schurig, D.; Pendry, J.B. Smith D R. Calculation of material properties and ray tracing in transformation media. Opt. Express 2006, 14, 9794–9804. [Google Scholar] [CrossRef]
- Peng, H.; Han, H.; He, P.; Xia, K.; Zhang, J.; Li, X.C.; Bao, Q.L.; Chen, Y.; Chen, H. The Luneburg–Lissajous lens. EPL 2020, 129, 64001. [Google Scholar] [CrossRef]
- Foster, R.; Nagarkoti, D.; Gao, J.; Benjamin, V.; Felix, N.; Spooner, C.; Haq, S.; Yang, H. Beam-steering performance of flat Luneburg lens at 60 GHz for future wireless communications. Int. J. Antennas Propag. 2017, 2017, 7932434. [Google Scholar] [CrossRef]
- Xue, L.; Fusco, V.F. 24 GHz automotive radar planar Luneburg lens. IET Microw. Antennas Propag. 2007, 1, 624–628. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zhang, Y.L.; Zheng, M.L.; Dong, X.Z.; Duan, X.M.; Zhao, Z.S. Three-dimensional Luneburg lens at optical frequencies. Laser Photon. Rev. 2016, 10, 665–672. [Google Scholar] [CrossRef]
- Rebecca, D.S.; Timothy, D.Y.; Koroush, S.; Du, T.N.; Nikola, A.D.; Jason, M.O.; Michael, A.J.; Oscar, D.H.; Frederick, J.R.; Lana, L.W. 3D printed gradient index glass optics. Sci. Adv. 2020, 6, 47. [Google Scholar]
- Xu, C.; Dana, I.; Wang, L.G.; Sebbah, P. Light chaotic dynamics in the transformation from curved to flat surfaces. Proc. Natl. Acad. Sci. USA 2022, 119, e2112052119. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, D.; Ge, Y.; Xiao, W.; Chen, H. Asymmetrical Three-Dimensional Conformal Imaging Lens. Photonics 2024, 11, 543. https://doi.org/10.3390/photonics11060543
Gong D, Ge Y, Xiao W, Chen H. Asymmetrical Three-Dimensional Conformal Imaging Lens. Photonics. 2024; 11(6):543. https://doi.org/10.3390/photonics11060543
Chicago/Turabian StyleGong, Desen, Yixiao Ge, Wen Xiao, and Huanyang Chen. 2024. "Asymmetrical Three-Dimensional Conformal Imaging Lens" Photonics 11, no. 6: 543. https://doi.org/10.3390/photonics11060543
APA StyleGong, D., Ge, Y., Xiao, W., & Chen, H. (2024). Asymmetrical Three-Dimensional Conformal Imaging Lens. Photonics, 11(6), 543. https://doi.org/10.3390/photonics11060543