High-Bandwidth Lumped Mach-Zehnder Modulators Based on Thin-Film Lithium Niobate
Abstract
:1. Introduction
2. Device and Principle
2.1. Device Layout
2.2. Theoretical EO Response
2.2.1. Electrical Cutoff Frequency
2.2.2. Optical Transit Time
2.2.3. Model Validation
3. EO Bandwidth Enhancement
3.1. Limitations of Conventional Lumped Electrodes
3.2. Capacitively−Loaded Lumped Electrodes
3.3. Energy Consumption and Eye Diagrams
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Witzens, J. High-speed silicon photonics modulators. Proc. IEEE 2018, 106, 2158–2182. [Google Scholar] [CrossRef]
- Rao, A.; Fathpour, S. Compact lithium niobate electrooptic modulators. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–14. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Kharel, P.; Zhu, D.; Lončar, M. Integrated lithium niobate electro-optic modulators: When performance meets scalability. Optica 2021, 8, 652–667. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, M.; Yang, Y.; Hassanien, A.E.; Goddard, L.L.; Gong, S. Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform. Opt. Express 2020, 28, 29644–29661. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Kumar, R.; Sakib, M.; Driscoll, J.B.; Jayatilleka, H.; Rong, H. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Light. Technol. 2018, 37, 110–115. [Google Scholar] [CrossRef]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Li, M.; Ling, J.; He, Y.; Javid, U.A.; Xue, S.; Lin, Q. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 2020, 11, 4123. [Google Scholar] [CrossRef] [PubMed]
- Pohl, D.; Messner, A.; Kaufmann, F.; Escalé, M.R.; Holzer, J.; Leuthold, J.; Grange, R. 100-GBd waveguide Bragg grating modulator in thin-film lithium niobate. IEEE Photonics Technol. Lett. 2020, 33, 85–88. [Google Scholar] [CrossRef]
- Li, X.; Yang, F.; Zhong, F.; Deng, Q.; Michel, J.; Zhou, Z. Single-drive high-speed lumped depletion-type modulators toward 10 fJ/bit energy consumption. Photonics Res. 2017, 5, 134–142. [Google Scholar] [CrossRef]
- Mao, D.; Alam, M.S.; Parvizi, M.; El-Fiky, E.; Abdo, A.; Ben-Hamida, N.; Plant, D.V. Design, analysis, and characterization of a compact silicon photonic modulator with meandered phase shifters. Opt. Express 2022, 30, 32990–33002. [Google Scholar] [CrossRef] [PubMed]
- Azadeh, S.S.; Nojić, J.; Moscoso-Mártir, A.; Merget, F.; Witzens, J. Power-efficient lumped-element meandered silicon Mach-Zehnder modulators. In Proceedings of the Silicon Photonics XV, SPIE, Bellingham, WA, USA, 26 February 2020; Volume 11285, pp. 65–75. [Google Scholar]
- Zhou, S.; Wu, H.T.; Sadeghipour, K.; Scarcella, C.; Eason, C.; Rensing, M.; Power, M.J.; Antony, C.; O’Brien, P.; Townsend, P.D.; et al. Optimization of PAM-4 transmitters based on lumped silicon photonic MZMs for high-speed short-reach optical links. Opt. Express 2017, 25, 4312–4325. [Google Scholar] [CrossRef] [PubMed]
- Sobu, Y.; Tanaka, S.; Tanaka, Y. High-speed-operation of all-silicon lumped-electrode modulator integrated with passive equalizer. Ieice Trans. Electron. 2020, 103, 619–626. [Google Scholar] [CrossRef]
- Tanaka, S.; Simoyama, T.; Aoki, T.; Mori, T.; Sekiguchi, S.; Jeong, S.H.; Usuki, T.; Tanaka, Y.; Morito, K. Ultralow-power (1.59 mW/Gbps), 56-Gbps PAM4 operation of Si photonic transmitter integrating segmented PIN Mach–Zehnder modulator and 28-nm CMOS driver. J. Light. Technol. 2018, 36, 1275–1280. [Google Scholar] [CrossRef]
- Murray, B.; Antony, C.; Talli, G.; Townsend, P.D. Predistortion for high-speed lumped silicon photonic mach-zehnder modulators. IEEE Photonics J. 2022, 14, 1–11. [Google Scholar] [CrossRef]
- Cong, G.; Maegami, Y.; Ohno, M.; Yamada, K. Ultra-compact non-travelling-wave silicon carrier-depletion Mach-Zehnder modulators towards high channel density integration. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 1–11. [Google Scholar] [CrossRef]
- Cong, G.; Ohno, M.; Maegami, Y.; Okano, M.; Kou, R.; Yamamoto, N.; Yamada, K. Ultra-compact non-travelling-wave silicon Mach-Zehnder modulator. In Proceedings of the 45th European Conference on Optical Communication (ECOC 2019), IET, Dublin, Ireland, 22–26 September 2019; pp. 1–3. [Google Scholar]
- Azadeh, S.S.; Merget, F.; Romero-García, S.; Moscoso-Mártir, A.; von den Driesch, N.; Müller, J.; Mantl, S.; Buca, D.; Witzens, J. Low V π Silicon photonics modulators with highly linear epitaxially grown phase shifters. Opt. Express 2015, 23, 23526–23550. [Google Scholar] [CrossRef] [PubMed]
- Cammarata, S.; Velha, P.; Palla, F.; Di Pasquale, F.; Saponara, S.; Faralli, S. 30 Gb/s NRZ Transmission with Lumped-Element Silicon Photonic Mach-Zehnder Modulator. In Proceedings of the 2022 IEEE Photonics Conference (IPC), Rome, Italy, 10–14 November 2024; pp. 1–2. [Google Scholar]
- Dourado, D.M.; de Farias, G.B.; Bustamante, Y.R.; Rocha, M.d.L.; Carmo, J. Capacitive Silicon Modulator Design With V-Shaped SiO2 Gate Waveguide to Optimize Vπ×L and Bandwidth Trade-Off. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 1–8. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Stern, B.; Lipson, M.; Lončar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 2018, 26, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Ghosh, S.; Chagnon, M.; Samani, A.; Veerasubramanian, V.; Osman, M.; Plant, D.V. Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express 2015, 23, 14263–14287. [Google Scholar] [CrossRef] [PubMed]
- Ghione, G. Semiconductor Devices for High-Speed Optoelectronics; Cambridge University Press: Cambridge, UK, 2009; Volume 116. [Google Scholar]
- Kharel, P.; Reimer, C.; Luke, K.; He, L.; Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 2021, 8, 357–363. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, B.; Sun, C.; Wang, J.; Hao, Z.; Wang, L.; Han, Y.; Li, H.; Luo, Y. Sub-terahertz bandwidth capactively-loaded thin-film lithium niobate electro-optic modulators based on an undercut structure. Opt. Express 2021, 29, 41798–41807. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, B.; Sun, C.; Hao, Z.; Wang, L.; Wang, J.; Han, Y.; Li, H.; Luo, Y. Capacitively-loaded thin-film lithium niobate modulator with ultra-flat frequency response. IEEE Photonics Technol. Lett. 2022, 34, 854–857. [Google Scholar] [CrossRef]
- Chen, G.; Chen, K.; Gan, R.; Ruan, Z.; Wang, Z.; Huang, P.; Lu, C.; Lau, A.P.T.; Dai, D.; Guo, C.; et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode. APL Photonics 2022, 7, 026103. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, Y.; Pittalà, F.; Tang, J.; He, M.; Ng, W.C.; Wang, J.; Ruan, Z.; Tang, X.; Kuschnerov, M.; et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 2022, 9, 61–62. [Google Scholar] [CrossRef]
- Breyne, L.; Ramon, H.; Van Gasse, K.; Verplaetse, M.; Lambrecht, J.; Vanhoecke, M.; Van Campenhout, J.; Roelkens, G.; Ossieur, P.; Yin, X.; et al. 50 GBd PAM4 transmitter with a 55nm SiGe BiCMOS driver and silicon photonic segmented MZM. Opt. Express 2020, 28, 23950–23960. [Google Scholar] [CrossRef] [PubMed]
- Vanhoecke, M.; Aimone, A.; Argyris, N.; Dris, S.; Vaernewyck, R.; Verheyen, K.; Gruner, M.; Fiol, G.; Apostolopoulos, D.; Avramopoulos, H.; et al. Segmented optical transmitter comprising a CMOS driver array and an InP IQ-MZM for advanced modulation formats. J. Light. Technol. 2016, 35, 862–867. [Google Scholar] [CrossRef]
- Xu, J.; Du, J.; Ren, R.; Ruan, Z.; He, Z. Optical interferometric synthesis of PAM4 signals based on dual-drive Mach–Zehnder modulation. Opt. Commun. 2017, 402, 73–79. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
W | 10 m | g | 3 m |
S | 57 m | r | 2 m |
c | 5 m | h | 3 m |
d | 45 m | p | 50 m |
Implementation Details | Simulation Bandwidth (GHz) | Measurement Bandwidth (GHz) | Bit Rate (Gb/s) | Length | Reference |
---|---|---|---|---|---|
SOI Lumped | 13.5 | 7.7 | PAM4∼106 a | 1.6 mm | [11] |
SOI Lumped | 10.1 | 8.7 | NRZ∼25 | 1.4 mm | [12] |
SOI Lumped | 5 | 3 | PAM4∼36 b | 1.5 mm | [13] |
SOI Lumped | N.A | 6.2 | PAM4∼50 c | 1.5 mm | [16] |
SOI Lumped | 32 d | 26 | NRZ∼28.1 | 1.1 mm | [17] |
SOI Lumped | 18 | 14 | NRZ∼25 | 2 mm | [17] |
SOI Lumped | N.A | 13 | NRZ∼25 | 1.1 mm | [18] |
SOI Lumped | N.A | 8.9 | NRZ∼30 | 1.5 mm | [20] |
LNOI Lumped | N.A | 15 | NRZ∼22 | 2 mm | [22] |
LNOI Capacitively−Loaded Lumped | 24.5 | N.A | NRZ∼56 * | 2 mm | This Work |
LNOI Capacitively−Loaded Lumped | 32.4 | N.A | NRZ∼64 * | 1.5 mm | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Sun, S.; Zhang, Y.; Cao, R.; He, H.; Xue, H.; Liu, F. High-Bandwidth Lumped Mach-Zehnder Modulators Based on Thin-Film Lithium Niobate. Photonics 2024, 11, 399. https://doi.org/10.3390/photonics11050399
Yang P, Sun S, Zhang Y, Cao R, He H, Xue H, Liu F. High-Bandwidth Lumped Mach-Zehnder Modulators Based on Thin-Film Lithium Niobate. Photonics. 2024; 11(5):399. https://doi.org/10.3390/photonics11050399
Chicago/Turabian StyleYang, Peng, Siwei Sun, Yuqiang Zhang, Rui Cao, Huimin He, Haiyun Xue, and Fengman Liu. 2024. "High-Bandwidth Lumped Mach-Zehnder Modulators Based on Thin-Film Lithium Niobate" Photonics 11, no. 5: 399. https://doi.org/10.3390/photonics11050399
APA StyleYang, P., Sun, S., Zhang, Y., Cao, R., He, H., Xue, H., & Liu, F. (2024). High-Bandwidth Lumped Mach-Zehnder Modulators Based on Thin-Film Lithium Niobate. Photonics, 11(5), 399. https://doi.org/10.3390/photonics11050399