Double-Cycle Alternating-Flow Diode Pumped Potassium Vapor Laser
Abstract
:1. Introduction
2. Description of the Novel DPAL
- (a)
- Solve the rate Equations (1)–(3) to obtain the population density of K atoms at each energy level;
- (b)
- Substitute K into the beam propagation Equations (7) and (8) to obtain the initial distribution of the pump and laser in the resonant cavity;
- (c)
- Solve the heat balance Equation (13) to obtain the temperature in the gain zone;
- (d)
- Use the obtained temperature instead of the initial temperature to correct the parameters affected by temperature, then re-substitute these parameters into the rate equation and beam propagation equation to solve the new atomic population density K of each energy level and the distribution of the pump and laser;
- (e)
- Repeat Steps (b)–(d) until the temperature and laser amplitude in the gain zone stabilize; finally, obtain the laser output in the steady state.
3. Results and Discussion
3.1. Gas Flow Rate
3.2. Linewidth of the Pump
3.3. Helium Pressure
3.4. Length of the Gain Zone
3.5. Pump Power Density
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krupke, W.F. Diode-Pumped Alkali Laser. US Patent 6643311, 4 November 2003. [Google Scholar]
- Barmashenko, B.D.; Rosenwaks, S. Modeling of flowing gas diode pumped alkali lasers: Dependence of the operation on the gas velocity and on the nature of the buffer gas. Opt. Lett. 2012, 37, 3615–3617. [Google Scholar] [CrossRef] [PubMed]
- Barmashenko, B.D.; Rosenwaks, S. Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers. J. Opt. Soc. Am. B 2013, 30, 1118–1126. [Google Scholar] [CrossRef]
- Barmashenko, B.D.; Rosenwaks, S.; Waichman, K. Model calculations of kinetic and fluid dynamic processes in diode pumped alkali lasers. In Proceedings of the Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems, Dresden, Germany, 23–26 September 2013; International Society for Optics and Photonics (USA): Bellingham, DC, USA, 2013; Volume 8898, p. 88980W. [Google Scholar]
- Barmashenko, B.D.; Rosenwaks, S.; Waichman, K. Kinetic and fluid dynamic processes in diode pumped alkali lasers: Semianalytical and 2D and 3D CFD modeling. In Proceedings of the SPIE the International Society for Optical Engineering, San Francisco, CA, USA, 2–4 February 2014; Volume 8962, p. 89620C. [Google Scholar]
- Waichman, K.; Barmashenko, B.D.; Rosenwaks, S. Beam propagation in an inhomogeneous medium of a static gas cesium diode pumped alkali laser: Three-dimensional wave optics and fluid dynamics simulation. J. Opt. Soc. Am. B Opt. Phys. 2018, 35, 558–567. [Google Scholar] [CrossRef]
- Barmashenko, B.D.; Rosenwaks, S. Feasibility of supersonic diode pumped alkali lasers: Model calculations. Appl. Phys. Lett. 2013, 102, 141108. [Google Scholar] [CrossRef]
- Rosenwaks, S.; Barmashenko, B.D.; Waichman, K. Theoretical studies of the feasibility of supersonic DPALs. In Proceedings of the SPIE Security+ Defence, Amsterdam, The Netherlands, 22–25 September 2014; Volume 9251, p. 92510W. [Google Scholar]
- Rosenwaks, S.; Barmashenko, B.D.; Waichman, K. What can we gain from supersonic operation of diode pumped alkali lasers: Model calculations. In Proceedings of the SPIE Security+Defence, Dresden, Germany, 23–26 September 2013; International Society for Optics and Photonics (USA): Bellingham, DC, USA, 2013; Volume 9251, p. 92510W. [Google Scholar]
- Rosenwaks, S.; Barmashenko, B.D.; Waichman, K. Semi-analytical and 3D CFD DPAL modeling: Feasibility of supersonic operation. In Proceedings of the SPIE the International Society for Optical Engineering, San Francisco, CA, USA, 2–4 February 2014; Volume 8962, p. 896209. [Google Scholar]
- Yacoby, E.; Waichman, K.; Sadot, O.; Barmashenko, B.D.; Rosenwaks, S. Flowing-gas diode pumped alkali lasers: Theoretical analysis of transonic vs supersonic and subsonic devices. Opt. Express 2016, 24, 5469–5477. [Google Scholar] [CrossRef]
- Barmashenko, B.D.; Auslender, I.; Yacoby, E.; Waichman, K.; Sadot, O.; Rosenwaks, S. Modeling of static and flowing-gas diode pumped alkali lasers. In Proceedings of the Conference on High Energy/Average Power Lasers and Intense Beam Applications IX, San Francisco, CA, USA, 15–16 February 2016; Volume 9729, p. 972904. [Google Scholar]
- Rosenwaks, S.; Yacoby, E.; Waichman, K.; Sadot, O. Supersonic diode pumped alkali lasers: Computational fluid dynamics modeling. In Proceedings of the Technologies for Optical Countermeasures XII and High-Power Lasers 2015: Technology and Systems, Toulouse, France, 21–24 September 2015; International Society for Optics and Photonics: Bellingham, DC, USA, 2015; Volume 9650, p. 96500A. [Google Scholar]
- Yacoby, E.; Waichman, K.; Sadot, O.; Barmashenko, B.D.; Rosenwaks, S. Modeling of supersonic diode pumped alkali lasers. J. Opt. Soc. Am. B-Opt. Phys. 2015, 32, 1824–1833. [Google Scholar] [CrossRef]
- Gavrielides, A.; Schlie, L.A.; Loper, R.D.; Hawks, M.R.; Perram, G.P. Analytic treatment of high power diode pumped lasers with unstable resonator in a flowing medium. In Proceedings of the Laser Resonators, Microresonators, & Beam Control XX, San Francisco, CA, USA, 29 January–1 February 2018; Volume 10518, p. 1051815. [Google Scholar]
- Gavrielides, A.; Schlie, L.A.; Loper, R.D.; Hawks, M.R.; Perram, G.P. Analytic treatment of beam quality and power efficiency in a high-power transverse flow diode pumped alkali laser. J. Opt. Soc. Am. B 2018, 35, 2202–2210. [Google Scholar] [CrossRef]
- Endo, M.; Nagaoka, R.; Nagaoka, H.; Nagai, T.; Wani, F. Wave-optics simulation of diode-pumped cesium vapor laser coupled with a simplified gas-flow model. Jpn. J. Appl. Phys. 2018, 57, 092701. [Google Scholar] [CrossRef]
- Endo, M.; Nagaoka, R.; Nagaoka, H.; Nagai, T.; Wani, F. Modeling of diode pumped cesium vapor laser by combination of computational fluid dynamics and wave-optics. Jpn. J. Appl. Phys. 2020, 59, 022002. [Google Scholar] [CrossRef]
- Ren, G.; Yi, W.; Qi, Y.; Huang, J.; Qu., C. U.S. theater and strategic UVA-borne laser weapon. Laser Optoelectron. Prog. 2017, 54, 100002.1–100002.8. (In Chinese) [Google Scholar]
- Zediker, M.S.; Makki, S.; Faircloth, B.O.; DeWitt, R.A.; Allen, E.C.; Underwood, L.D. Control System for High Power Laser Drilling Workover and Completion Unit. US Patent 9027668, 4 October 2012. [Google Scholar]
- Zhdanov, B.V.; Rotondaro, M.D.; Shaffer, M.K.; Knize, R. Potassium diode pumped alkali laser demonstration using a closed cycle flowing system. Opt. Commun. 2015, 354, 256–258. [Google Scholar] [CrossRef]
- Zhdanov, B.V.; Rotondaro, M.D.; Shaffer, M.K.; Knize, R.J. Low pressure cesium and potassium diode pumped alkali lasers: Pros and cons. Opt. Eng. 2016, 55, 026105. [Google Scholar] [CrossRef]
- Ning, F.; Tan, R.; Wang, Y. Investigation on threshold characteristics of laser-diode end-pumped potassium vapor laser. Infrared Laser Eng. 2019, 48, S105002-1–S105002-8. [Google Scholar]
- Shen, B.; Pan, B.; Jiao, J.; Xia, C. Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers. Opt. Express 2015, 23, 19500–19511. [Google Scholar] [CrossRef] [PubMed]
Parameter | Description | Value |
---|---|---|
level population density | ||
level population density | ||
level population density | ||
T | Gain-medium temperature | |
k | Boltzmann’s constant | 1.38 × 10−23 J/K |
Stimulated absorption cross section | ||
Stimulated emission cross section | 4.71 × 10−13 cm2 | |
Mixing cross section | 1.78 × 10−15 cm2 | |
2P3/2 level lifetime | 26.37 ns | |
2P1/2 level lifetime | 26.72 ns | |
Pump power density | ||
Forward and reverse laser power density | ||
Laser output power density | ||
Tl | Transmittance of laser through vapor cell window | 0.98 |
Tp | Transmittance of pump through vapor cell window | 0.98 |
Ts | One-way scattering loss in the cavity | 0.95 |
Rp | Reflectivity of the back reflector | 0.999 |
Roc | Reflectivity of the output coupler | 0.6 |
Tw | Wall temperature of the vapor pool | 500 K |
Laser spot radius | 1 mm | |
Nu | Nusselt number | 213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Tan, R.; Xu, W.; Ning, F.; Li, Z. Double-Cycle Alternating-Flow Diode Pumped Potassium Vapor Laser. Photonics 2024, 11, 391. https://doi.org/10.3390/photonics11050391
Liu S, Tan R, Xu W, Ning F, Li Z. Double-Cycle Alternating-Flow Diode Pumped Potassium Vapor Laser. Photonics. 2024; 11(5):391. https://doi.org/10.3390/photonics11050391
Chicago/Turabian StyleLiu, Songyang, Rongqing Tan, Wenning Xu, Fangjin Ning, and Zhiyong Li. 2024. "Double-Cycle Alternating-Flow Diode Pumped Potassium Vapor Laser" Photonics 11, no. 5: 391. https://doi.org/10.3390/photonics11050391
APA StyleLiu, S., Tan, R., Xu, W., Ning, F., & Li, Z. (2024). Double-Cycle Alternating-Flow Diode Pumped Potassium Vapor Laser. Photonics, 11(5), 391. https://doi.org/10.3390/photonics11050391